Synlett 2017; 28(05): 589-592
DOI: 10.1055/s-0036-1588125
letter
© Georg Thieme Verlag Stuttgart · New York

Mechanochemical Synthesis of Substituted 4H-3,1-Benzoxazin-4-ones, 2-Aminobenzoxazin-4-ones, and 2-Amino-4H-3,1-benzothiazin-4-ones Mediated by 2,4,6-Trichloro-1,3,5-triazine and Triphenylphosphine

Mookda Pattarawarapan*
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
,
Sirawit Wet-osot
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
,
Dolnapa Yamano
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
,
Wong Phakhodee
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 14 October 2016

Accepted after revision: 27 November 2016

Publication Date:
12 December 2016 (online)


Abstract

A mild and convenient approach for the synthesis of 2-substituted 4H-3,1-benzoxazin-4-ones, 2-aminobenzoxazin-4-ones, and 2-amino-4H-3,1-benzothiazin-4-ones under solvent-assisted grinding is reported. In the presence of 2,4,6-trichloro-1,3,5-triazine and catalytic triphenylphosphine, cyclodehydration of N-substituted anthranilic acid derivatives proceeded rapidly within minutes at room temperature. The products were also obtained in good to excellent yields by using minimal amounts of solvent and inexpensive reagents.

Supporting Information

 
  • References

  • 1 Lu L.-Q, Li Y, Junge K, Beller M. J. Am. Chem. Soc. 2015; 137: 2763
  • 2 Chen Q.-A, Chen M.-W, Yu C.-B, Shi L, Wang D.-S, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2011; 133: 16432
  • 3 Rueping M, Antonchik AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751
  • 4 Lu W, Baig IA, Sun H.-J, Cui C.-J, Guo R, Jung I.-P, Wang D, Dong M, Yoon M.-Y, Wang J.-G. Eur. J. Med. Chem. 2015; 94: 298
  • 5 Liu J.-F, Kaselj M, Isome Y, Ye P, Sargent K, Sprague K, Cherrak D, Wilson CJ, Si Y, Yohannes D, Ng S.-C. J. Comb. Chem. 2006; 8: 7
  • 6 Banerjee A, Santra SK, Mohanta PR, Patel BK. Org. Lett. 2015; 17: 5678
  • 7 Piao Z.-T, Guan L.-P, Zhao L.-M, Piao H.-R, Quan Z.-S. Eur. J. Med. Chem. 2008; 43: 1216
  • 8 Jakobsen P, Ritsmar Pedersen B, Persson E. Bioorg. Med. Chem. 2000; 8: 2095
  • 9 Krantz A, Spencer RW, Tam TF, Liak TJ, Copp LJ, Thomas EM, Rafferty SP. J. Med. Chem. 1990; 33: 464
  • 10 Abood NA, Schretzman LA, Flynn DL, Houseman KA, Wittwer AJ, Dilworth VM, Hippenmeyer PJ, Holwerda BC. Bioorg. Med. Chem. Lett. 1997; 7: 2105
  • 11 Powers JC, Asgian JL, Ekici OD, James KE. Chem. Rev. 2002; 102: 4639
  • 12 Hays SJ, Caprathe BW, Gilmore JL, Amin N, Emmerling MR, Michael W, Nadimpalli R, Nath R, Raser KJ, Stafford D, Watson D, Wang K, Jaen JC. J. Med. Chem. 1998; 41: 1060
  • 13 Yu J, Zhang-Negrerie D, Du Y. Eur. J. Org. Chem. 2016; 562
  • 14 Laha JK, Tummalapalli KS. S, Nair A, Patel N. J. Org. Chem. 2015; 80: 11351
  • 15 Wu X.-F, Schranck J, Neumann H, Beller M. Chem. Eur. J. 2011; 17: 12246
  • 17 Liu Q, Chen P, Liu G. ACS Catal. 2013; 3: 178
  • 18 Ge Z.-Y, Xu Q.-M, Fei X.-D, Tang T, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2013; 78: 4524
  • 19 Rad-Moghadam K, Montazeri N. Asian J. Chem. 2007; 19: 2467
  • 20 Mohapatra DK, Datta A. Synlett 1996; 1129
  • 21 Rad-Moghadam K, Rouhi S. Beilstein J. Org. Chem. 2009; 5: No. 13
  • 22 Prashanth MK, Revanasiddappa HD. Med. Chem. Res. 2013; 22: 2665
  • 23 Khajavi MS, Shariat SM. Heterocycles 2005; 65: 1159
  • 24 Shariat M, Samsudin MW, Zakaria Z. Molecules 2012; 17: 11607
  • 25 Shariat M, Samsudin MW, Zakaria Z. Chem. Cent. J. 2013; 7: 58
  • 26 Pattarawarapan M, Jaita S, Phakhodee W. Tetrahedron Lett. 2016; 57: 3171
  • 27 Kolesinska B, Kaminski ZJ. Tetrahedron 2009; 65: 3573
  • 28 Duangkamol C, Jaita S, Wangngae S, Phakhodee W, Pattarawarapan M. Tetrahedron Lett. 2015; 56: 4997
  • 29 James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
  • 30 General Procedure: N-Substituted anthranilic acid (0.542 mmol), TCT (0.542 mmol), PPh3 (0.054 mmol), and Na2CO3 (1.084 mmol) were mixed and ground together for 1 min, during which a few drops of THF were added to aid homogeneous mixing. Upon completion of the reaction as indicated by TLC, dichloromethane (2 mL) was added and the resulting mixture was filtered through a short pad of silica, followed by solvent evaporation under reduced pressure. 2-Phenyl-4H-benzo[d][1,3]oxazin-4-one (2a; Table 2, entry 1): Yield: 0.1103 g (0.494 mmol, 91%); white solid; mp 120–122 °C; Rf 0.38 (EtOAc/hexanes, 10%). 1H NMR (400 MHz, CDCl3): δ = 8.29 (d, J = 7.2 Hz, 2 H), 8.22 (dd, J = 8.0, 1.2 Hz, 1 H), 7.80 (td, J = 8.0, 1.2 Hz, 1 H), 7.67 (d, J = 8.0 Hz, 1 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.49 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 159.6, 157.2, 147.0, 136.6, 132.7, 130.3, 128.8, 128.7, 128.4, 128.3, 127.3, 117.1. 2-(4-Fluorobenzyl)-4H-benzo[d][1,3]oxazin-4-one (2k; Table 2, entry 11): Yield: 0.1181 g (0.462 mmol, 85%); white solid; mp 125–127 °C; Rf 0.42 (EtOAc/hexanes, 10%). FTIR (neat): 1766, 1642, 1605, 1513 cm–1; 1H NMR (400 MHz, CDCl3): δ = 8.15 (dd, J = 8.0, 1.2 Hz, 1 H), 7.78 (td, J = 8.0, 1.2 Hz, 1 H), 7.57 (d, J = 8.0 Hz, 1 H), 7.48 (td, J = 8.0, 1.2 Hz, 1 H), 7.38 (dd, J = 8.6, 5.2 Hz, 2 H), 7.03 (t, J = 8.6 Hz, 2 H), 3.95 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 163.6, 161.1, 161.0, 159.6, 146.4, 136.6, 131.0. 130.9, 129.9 (d, J = 12.4 Hz), 128.6, 126.9, 116.9, 115.9, 115.7, 40.8. HRMS (ESI-TOF): m/z [M+H]+ calcd for C15H11FNO2: 256.0774; found: 256.0776. 2-(4-Hydroxybenzyl)-4H-benzo[d][1,3]oxazin-4-one (2n; Table 2, entry 14): Yield: 0.0978 g (0.386 mmol, 71%); white solid; mp 154.4–155.3 °C; Rf 0.26 (EtOAc/hexanes, 30%). FTIR (neat): 3427, 1761, 1647, 1597, 1518 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.16 (dd, J = 8.0, 1.2 Hz, 1 H), 7.78 (td, J = 8.0, 1.2 Hz, 1 H), 7.59 (d, J = 8.0 Hz, 1 H), 7.49 (td, J = 8.0, 1.2 Hz, 1 H), 7.22 (d, J = 8.4 Hz, 2 H), 6.78 (d, J = 8.4 Hz, 2 H), 6.50 (s, 1 H), 3.90 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 162.0, 160.0, 155.6, 146.4, 136.9, 130.6, 128.65, 128.63, 126.7, 125.8, 116.8, 115.9, 40.8. HRMS (ESI-TOF): m/z [M+Na]+ calcd for C15H11NO3Na: 276.0637; found: 276.0641. 2-(Naphthalen-1-ylamino)-4H-benzo[d][1,3]oxazin-4-one (5e): Yield: 0.1348 g (0.468 mmol, 86%); white solid; mp 182–184 °C; Rf 0.42 (EtOAc/hexanes, 20%). 1H NMR (400 MHz, CDCl3+CD3OD 3 drops): δ = 8.51 (d, J = 8.0 Hz, 1 H), 8.07–8.04 (m, 1 H), 7.89 (d, J = 8.0 Hz, 1 H), 7.87–7.84 (m, 1 H), 7.76 (d, J = 8.4 Hz, 1 H), 7.67–7.64 (m, 1 H), 7.51–7.44 (m, 4 H), 6.95 (t, J = 7.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3+CD3OD 3 drops): δ = 163.4, 153.3, 150.0, 142.2, 134.50, 134.46, 130.9, 128.5, 126.88, 126.83, 126.5, 126.3, 125.8, 123.6, 122.1, 121.4, 120.05, 120.00. 2-(Phenylamino)-4H-benzo[d][1,3]thiazin-4-one (6a); Yield: 0.1353 g (0.532 mmol, 98%); orange solid; mp 161–162 °C; Rf  0.30 (EtOAc/hexanes, 10%). 1H NMR (400 MHz, CDCl3): δ = 8.10 (dd, J = 8.0, 1.6 Hz, 1 H), 7.65 (td, J = 8.0, 1.6 Hz, 1 H), 7.57 (d, J = 7.6 Hz, 1 H, 2 H), 7.48 (d, J = 8.0 Hz, 1 H), 7.39 (t, J = 7.6 Hz, 2 H), 7.34–7.26 (td, J = 8.0, 1.6 Hz, 1 H), 7.20 (t, J = 7.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 183.5, 153.3, 149.8, 138.0, 136.1, 129.4, 128.4, 125.4, 125.3, 125.0, 122.3, 118.2.
  • 34 Haecker H.-G, Grundmann F, Lohr F, Ottersbach PA, Zhou J, Schnakenburg G, Guetschow M. Molecules 2009; 14: 378