Synthesis 2017; 49(08): 1898-1904
DOI: 10.1055/s-0036-1588119
paper
© Georg Thieme Verlag Stuttgart · New York

The Chemistry of Ethyl 3-(2-Ethoxy-2-oxoethyl)-1H-indole-2-carboxylate: Synthesis of Pyrimido[4,5-b]indoles and Diethyl 4-Hydroxyquinoline-2,3-dicarboxylate via Intramolecular Cyclizations

Tolga Kapti
Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey   Email: mbalci@metu.edu.tr
,
Cagatay Dengiz
Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey   Email: mbalci@metu.edu.tr
,
Metin Balci*
Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey   Email: mbalci@metu.edu.tr
› Author Affiliations
Further Information

Publication History

Received: 10 October 2016

Accepted after revision: 21 November 2016

Publication Date:
16 December 2016 (online)


Abstract

We report the synthesis of a new series of 2-oxo-1,2,4,9-tetrahydro-3H-pyrimido[4,5-b]indole derivatives and diethyl 4-hydroxyquinoline-2,3-dicarboxylate starting from ethyl 3-(2-ethoxy-2-oxoethyl)-1H-indole-2-carboxylate. Intramolecular cyclization formed the target ring systems. The key substrates featuring both acyl azide and isocyanate functionalities were prepared from bis(acyl azide) intermediate. The acyl azide functionalities directly connected to methylene groups were regiospecifically converted into urea and urethanes via the reactive isocyanate intermediates. Thermal treatment of urea and urethanes provided the target 2-oxo-1,2,4,9-tetrahydro-3H-pyrimido[4,5-b]indoles. Furthermore, ozonolysis of the starting indolediester substrate and subsequent base treatment to diethyl 4-hydroxyquinoline-2,3-dicarboxylate are described.

Supporting Information

 
  • References

  • 1 Dahlöf C. Therapy 2005; 2: 349
  • 2 Behari J, Zeng G, Otruba W, Thompson M, Muller P, Micsenyi A, Sekhon SS, Leoni L, Monga SP. S. J. Hepatol. 2007; 46: 849
  • 3 Frishman WH. N. Engl. J. Med. 1983; 308: 940
  • 4 Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
  • 5 Sundberg RJ. Pyrroles and Their Benzoderivatives: Synthesis and Applications. In Comprehensive Heterocyclic Chemistry. Vol. 4. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 313
  • 6 Hibino S, Choshi T. Nat. Prod. Rep. 2002; 19: 148
    • 7a Tichý M, Pohl R, Tloušt’ová E, Weber J, Bahador G, Lee YJ, Hocek M. Bioorg. Med. Chem. 2013; 21: 5362
    • 7b Tichý M, Pohl R, Xu HY, Chen Y.-L, Yokokawa F, Shi P.-Y, Hocek M. Bioorg. Med. Chem. 2012; 20: 6123
    • 7c Gangjee A, Zaware N, Raghavan S, Ihnat M, Shenoy S, Kisliuk RL. J. Med. Chem. 2010; 53: 1563
    • 8a Gasparoli L, D’Amico M, Masselli M, Pillozzi S, Caves R, Khuwaileh R, Tiedke W, Mugridge K, Pratesi A, Mitcheson JS, Basso G, Becchetti A, Arcangeli A. Mol. Pharmacol. 2015; 87: 183
    • 8b Majumder S, Bhuyan PJ. J. Iran. Chem. Soc. 2014; 11: 993
  • 9 Bosáková A, Perlíková A, Tichý M, Pohl R, Hocek M. Bioorg. Med. Chem. 2016; 24: 4528
    • 10a Traxler PM, Furet P, Mett H, Buchdunger E, Meyer T, Lydon N. J. Med. Chem. 1996; 39: 2285
    • 10b Showalter HD. H, Bridges AJ, Zhou H, Sercel AD, McMichael A, Fry DW. J. Med. Chem. 1999; 42: 5464
    • 11a Gangjee A, Zaware N, Raghavan S, Disch BC, Thorpe JE, Bastian A, Ihnat MA. Bioorg. Med. Chem. 2013; 21: 1857
    • 11b Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, Csaszar E, Knapp DJ. H. F, Miller P, Ngom M, Imren S, Roy D.-C, Watts KL, Kiem H.-P, Herrington R, Iscove NN, Humphries RK, Eaves CJ, Cohen S, Marinier A, Zandstra PW, Sauvageau G. Science 2014; 345: 1509
  • 12 Gangjee A, Zaware N, Devambatla RK. V, Raghavan S, Westbrook CD, Dybdal-Hargreaves NF, Hamel E, Mooberry SL. Bioorg. Med. Chem. 2013; 21: 891
  • 13 Lapachev VV, Stadlbauer W, Kappe T. Monatsh. Chem. 1988; 119: 97
  • 14 Vlasova MI, Kogan NA. Khim. Geterotsikl. Soedin. 1982; 935
  • 15 Sato Y, Tanaka T. Jpn. Tokkyo Koho JP 46005317 B4 19710209, 1971
  • 16 Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
  • 17 Robinson JR, Good NE. Can. J. Chem. 1957; 35: 1578
  • 18 Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297

    • For similar reactions, see:
    • 19a Dengiz C, Ozcan S, Sahin E, Balci M. Synthesis 2010; 1365
    • 19b Koza G, Keskin S, Ozer MS, Cengiz B, Sahin E, Balci M. Tetrahedron 2013; 69: 3959
    • 19c Ozcan S, Dengiz C, Deliomeroglu MK, Sahin E, Balci M. Tetrahedron Lett. 2011; 52: 1495
    • 20a Ergun M, Dengiz C, Ozer MS, Sahin E, Balci M. Tetrahedron 2014; 70: 5993
    • 20b Kilikli AA, Dengiz C, Ozcan S, Balci M. Synthesis 2011; 3697
    • 20c Koza G, Ozcan S, Sahin E, Balci M. Tetrahedron 2009; 65: 5973
  • 21 Camps R. Ber. Dtsch. Chem. Ges. 1899; 3228
    • 22a Witkop B. Liebigs Ann. Chem. 1944; 556: 103
    • 22b Witkop B, Goodwin S. J. Am. Chem. Soc. 1953; 75: 3371
    • 23a Boch M, Korth T, Nelke JM, Pike D, Radunz H, Winterfeldt E. Chem. Ber. 1972; 105: 2126
    • 23b Winterfeldt E. Liebigs Ann. Chem. 1971; 745: 23
    • 23c Sheng R, Zhu J, Hu Y. Molecules 2012; 17: 1177
  • 24 For a review on the Witkop–Winterfeldt oxidation of indoles, see: Mentel M, Breinbauer R. Curr. Org. Chem. 2007; 11: 159