Synlett 2017; 28(04): 485-488
DOI: 10.1055/s-0036-1588096
letter
© Georg Thieme Verlag Stuttgart · New York

Dehydrogenative Cross-Coupling Reactions of N-Aryl α-Amino Acid Esters with Nitroalkanes for the Synthesis of β-Nitro α-Amino Acid Esters

Zhi-Qiang Zhu*
a   Jiangxi 2011 Joint Center for Innovative Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. of China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, P. R. of China   Email: zhuzq@ecit.cn   Email: zhgle@ecit.cn
,
Zong-Bo Xie
a   Jiangxi 2011 Joint Center for Innovative Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. of China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, P. R. of China   Email: zhuzq@ecit.cn   Email: zhgle@ecit.cn
,
Zhang-Gao Le*
a   Jiangxi 2011 Joint Center for Innovative Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. of China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, P. R. of China   Email: zhuzq@ecit.cn   Email: zhgle@ecit.cn
› Author Affiliations
Further Information

Publication History

Received: 22 August 2016

Accepted after revision: 21 October 2016

Publication Date:
10 November 2016 (online)


Abstract

A novel copper-catalyzed dehydrogenative cross-coupling reaction of N-aryl α-amino acid esters with nitroalkanes to give β-nitro α-amino acid esters was developed. Various N-aryl α-amino acid esters reacted smoothly with nitroalkanes to give the desired coupling products in moderate to good yields. The method uses a cheap and simple copper salt as a catalyst and molecular oxygen as an environmentally benign oxidant. A possible mechanism for the dehydrogenative cross-coupling reaction is proposed.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Li C.-J, Li Z. Pure Appl. Chem. 2006; 78: 935
    • 1b Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1c Scheuermann C. Chem. Asian J. 2010; 5: 436
    • 1d Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 1e Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1f Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 1g Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1h Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
    • 1i Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 1j Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1k Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 2a Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
    • 2b Xie J, Huang Z.-Z. Angew. Chem. Int. Ed. 2010; 49: 10181
    • 2c Zhang G, Zhang Y, Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
    • 2d Huo C, Wang C, Wu M, Jia X, Xie H, Yuan Y. Adv. Synth. Catal. 2014; 356: 411
    • 2e Zhu Z.-Q, Bai P, Huang Z.-Z. Org. Lett. 2014; 16: 4881
    • 2f Salman M, Zhu Z.-Q, Huang Z.-Z. Org. Lett. 2016; 18: 1526
    • 3a Zhao L, Baslé O, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 4106
    • 3b Liu P, Wang Z, Lin J, Hu X. Eur. J. Org. Chem. 2012; 1583
    • 3c Li K, Tan G, Huang J, Song F, You J. Angew. Chem. Int. Ed. 2013; 52: 12942
    • 3d Huo C, Yuan Y, Wu M, Jia X, Wang X, Chen F, Tang J. Angew. Chem. Int. Ed. 2014; 53: 13544
    • 3e Wei W.-T, Song R.-J, Li J.-H. Adv. Synth. Catal. 2014; 356: 1703
    • 3f Wei X.-H, Wang G.-W, Yang S.-D. Chem. Commun. 2015; 51: 832
    • 3g Huo C, Yuan Y, Chen F, Tang J, Wang Y. Org. Lett. 2015; 17: 4208
    • 3h Huo C, Chen F, Yuan Y, Xie H, Wang Y. Org. Lett. 2015; 17: 5028
    • 3i Huo C, Yuan Y, Chen F, Wang Y. Adv. Synth. Catal. 2015; 357: 3648
    • 3j Huo C, Xie H, Chen F, Tang J, Wang Y. Adv. Synth. Catal. 2016; 358: 724
    • 3k Xie Z, Jia J, Liu X, Liu L. Adv. Synth. Catal. 2016; 358: 919
    • 4a Zhu SQ, Rueping M. Chem. Commun. 2012; 48: 11960
    • 4b Gao X.-W, Meng Q.-Y, Xiang M, Chen B, Feng K, Tung C.-H, Wu L.-Z. Adv. Synth. Catal. 2013; 355: 2158
    • 4c Gao X.-W, Meng Q.-Y, Li J.-X, Zhong J.-J, Lei T, Li X.-B, Tung C.-H, Wu L.-Z. ACS Catal. 2015; 5: 2391
    • 5a Ma D, Zhang Y, Yao J, Wu S, Tao F. J. Am. Chem. Soc. 1998; 120: 12459
    • 5b Fujii A, Hagiwara E, Sodeoka M. J. Am. Chem. Soc. 1999; 121: 5450
    • 5c Tanaka N, Tamai T, Mukaiyama H, Hirabayashi A, Muranaka H, Akahane S, Miyata H, Akahane M. J. Med. Chem. 2001; 44: 1436
    • 6a Que L, Tolman WB. Nature 2008; 455: 333
    • 6b Prigge ST, Eipper BA, Mains RE, Amzel LM. Science 2004; 304: 864
    • 6c Zuberbuhler AD In Metal Ions in Biological Systems . Vol. 5. Sigel H. Marcel Dekker; New York: 1976: 325
    • 7a Luzzio F. Tetrahedron 2001; 57: 915
    • 7b Christensen C, Juhl K, Hazell RG, Jørgensen KA. J. Org. Chem. 2002; 67: 4875
  • 8 β-Nitro α-Amino Acid Esters 3; General Procedure Et3N (2.0 mg, 0.02 mmol) was added to a mixture of CuI (3.8 mg, 0.02 mmol), the appropriate N-aryl glycine ester 1 (0.2 mmol), and nitroalkane 2 (2 mmol) in CH2Cl2 (1 mL), and the mixture was stirred at 30 °C under O2 (1 atm) for 24 h. When the reaction was complete, the mixture was concentrated under vacuum and the residue was purified by column chromatography (silica gel, PE–EtOAc). Ethyl 3-Nitro-N-(4-tolyl)alaninate (3aa) Brown oil; yield: 35.8 mg (71%). 1H NMR (400 MHz, CDCl3): δ = 7.03 (d, J = 8.4 Hz, 2 H), 6.60 (dd, J = 6.8, 2.0 Hz, 2 H), 4.87–4.75 (m, 2 H), 4.63–4.58 (m, 1 H), 4.39 (d, J = 8.0 Hz, 1 H), 4.32–4.24 (m, 2 H), 2.25 (s, 3 H), 1.29 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.7, 142.9, 130.1, 129.1, 114.2, 75.7, 62.6, 55.4, 20.4, 14.1. HRMS (EI-TOF): m/z [M+] calcd for C12H16N2O4: 252.1110; found: 252.1107.