Synlett 2016; 27(18): 2530-2540
DOI: 10.1055/s-0036-1588080
account
© Georg Thieme Verlag Stuttgart · New York

Cross-Coupling of Amides by N–C Bond Activation

Guangrong Meng
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA   Email: michal.szostak@rutgers.edu
,
Shicheng Shi
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA   Email: michal.szostak@rutgers.edu
,
Michal Szostak*
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA   Email: michal.szostak@rutgers.edu
› Author Affiliations
Further Information

Publication History

Received: 10 August 2016

Accepted after revision: 09 September 2016

Publication Date:
04 October 2016 (online)


These authors contributed equally.

Abstract

In recent years, significant conceptual advances have taken place in the field of amide bond cross-coupling. Mild and selective functionalization of amides by transition-metal catalysis has an enormous potential for widespread applications in both industry and academia due to the unparalleled prevalence of amide-containing molecules. However, direct metal insertion into the N–C(O) amide bond is extremely difficult as a consequence of amidic resonance. In this account, we summarize our work on the development of new cross-coupling reactions of amides by N–C bond activation, and briefly discuss other modern developments in this area.

1 Introduction

2 Amide Bond Ground-State Distortion

3 Acyl Amide N–C Cross-Coupling

3.1 Suzuki Cross-Coupling

3.2 Negishi Cross-Coupling

3.3 Esterification and Amidation via N–C Cross-Coupling

4 Decarbonylative Amide N–C Cross-Coupling

4.1 Heck Cross-Coupling

4.2 Suzuki Cross-Coupling

4.3 C–H Activation

4.4 Decarbonylative Borylation

5 Transition-Metal-Free Activation of Amide Bonds

6 Mechanistic Studies

7 Conclusions and Outlook

 
  • References and Notes

  • 1 Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science . Wiley-VCH; New York: 2003
  • 2 Pattabiraman VR, Bode JW. Nature 2011; 480: 471
  • 3 Brunton L, Chabner B, Knollman B. Goodman and Gilman’s The Pharmacological Basis of Therapeutics . MacGraw-Hill; New York: 2010
  • 4 Brown DG, Bostrom J. J. Med. Chem. 2016; 59: 4443
    • 5a Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 5b Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 5c Lemke TL, Williams DA. Foye’s Principles of Medicinal Chemistry . Lippincott; Philadelphia: 2013
  • 6 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 7 Beller M, Blaser HU. Top. Organomet. Chem. 2012; 42: 1
  • 8 Marchildon K. Macromol. React. Eng. 2011; 5: 22
    • 9a Trost BM, Fleming I. Comprehensive Organic Synthesis . Pergamon Press; Oxford: 1991
    • 9b Smith MB, March J. Advanced Organic Chemistry 2007
  • 10 Zabicky J. The Chemistry of Amides . Interscience; London: 1970
    • 11a Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley; New York: 2014
    • 11b Science of Synthesis: Cross-Coupling and Heck-Type Reactions . Molander G, Wolfe JP, Larhed M. Thieme; Stuttgart: 2013
    • 11c Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E. Wiley; New York: 2002
    • 12a Ouyang K, Hao W, Zhang WX, Xi Z. Chem. Rev. 2015; 115: 12045
    • 12b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
  • 13 Kemnitz CR, Loewen MJ. J. Am. Chem. Soc. 2007; 129: 2521
  • 14 Pauling L. Nobel Lecture: Modern Structural Chemistry. Sweden: 1954
    • 15a Johansson-Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 15b Wu XF, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9047
  • 16 For an excellent perspective, see: Ruider S, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856

    • For selected recent reports on amide bonds, see:
    • 17a Chen Y, Turlik A, Newhouse T. J. Am. Chem. Soc. 2016; 138: 1166
    • 17b Caldwell N, Jamieson C, Simpson I, Watson AJ. B. Chem. Commun. 2015; 51: 9495
    • 17c Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 17d Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
    • 17e Bechara WS, Pelletier G, Charette AB. Nat. Chem. 2012; 4: 228
    • 17f Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc. 2010; 132: 1770
    • 17g Gnanaprakasam B, Milstein D. J. Am. Chem. Soc. 2011; 133: 1682
  • 18 Trost BM. Science 1991; 254: 1471
  • 19 Meng G, Szostak M. Org. Lett. 2015; 17: 4364
  • 20 Meng G, Szostak M. Org. Biomol. Chem. 2016; 14: 5690
  • 21 Szostak M, Aubé J. Chem. Rev. 2013; 113: 5701
  • 22 Hartwig JF. Organotransition Metal Chemisty: From Bonding to Catalysis . University Science Books; Sausalito: 2010
  • 23 Mahatthananchai J, Dumas A, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954
    • 24a Kirby AJ, Komarov IV, Wothers PD, Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
    • 24b Tani K, Stoltz BM. Nature 2006; 441: 731
    • 24c Lei Y, Wrobleski AD, Golden JE, Powell DR, Aubé J. J. Am. Chem. Soc. 2005; 127: 4552
  • 25 Eliel EL, Wilen SH. Stereochemistry of Organic Compounds . Wiley; New York: 1994
    • 26a Greenberg A, Venanzi CA. J. Am. Chem. Soc. 1993; 115: 6951
    • 26b Greenberg A, Moore DT, DuBois TD. J. Am. Chem. Soc. 1996; 118: 8658
    • 26c Cox C, Lectka T. Acc. Chem. Res. 2000; 33: 849
    • 26d Wiberg KB. Acc. Chem. Res. 1999; 32: 922
    • 27a Szostak R, Aubé J, Szostak M. Chem. Commun. 2015; 51: 6395
    • 27b Szostak R, Aubé J, Szostak M. J. Org. Chem. 2015; 80: 7905
  • 28 Winkler FK, Dunitz JD. J. Mol. Biol. 1971; 59: 169

    • For reviews on acyl-metal intermediates, see:
    • 29a Dieter RK. Tetrahedron 1999; 55: 4177
    • 29b Zapf A. Angew. Chem. Int. Ed. 2003; 42: 5394
    • 29c Gooßen LJ, Rodriguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 29d Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 30 Hu F, Lalancette R, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 5062
  • 31 Li X, Zou G. Chem. Commun. 2015; 51: 5089
  • 32 Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
  • 33 For ketone synthesis using the amide bond pyramidalization concept, see: Liu C, Achtenhagen M, Szostak M. Org. Lett. 2016; 18: 2375
  • 34 Shi S, Szostak M. Chem. Eur. J. 2016; 22: 10420
  • 35 Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catal. 2016; 6: 3176

    • For reviews on the Negishi cross-coupling, see:
    • 36a Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
    • 36b Benischke AD, Ellwart M, Becker MR, Knochel P. Synthesis 2016; 48: 1101
    • 36c Handbook of Functionalized Organometallics . Knochel P. Wiley; Weinheim: 2005
  • 37 Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
  • 38 For a report on Ni(cod)2 paraffin capsules in N–C cross-coupling, see: Dander JE, Weires NA, Garg NK. Org. Lett. 2016; 18: 3934
  • 39 Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
    • 40a Dermenci A, Dong G. Sci. China Chem. 2013; 56: 685
    • 40b Johnson JB, Rovis T. Acc. Chem. Res. 2008; 41: 327
    • 40c Yamaguchi Y, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 40d For a recent impressive example of decarbonylative Suzuki cross-coupling of esters, see: Muto K, Yamaguchi J, Musaev DG, Itami K. Nat. Commun. 2015; 6: 7508

    • For selected recent advances in C–O activation, see:
    • 40e see ref. 40c
    • 40f Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 40g Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 40h Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Perec V. Chem. Rev. 2011; 111: 1346
    • 40i Mesganaw T, Garg NK. Org. Process Res. Dev. 2013; 17: 29
  • 41 Meng G, Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
  • 42 Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
  • 43 Meng G, Szostak M. Org. Lett. 2016; 18: 796
  • 44 Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
  • 45 Sun CL, Shi ZJ. Chem. Rev. 2014; 114: 9219
  • 46 Liu Y, Meng G, Liu R, Szostak M. Chem. Commun. 2016; 52: 6841
  • 47 Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
  • 48 Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 14494
  • 49 For amide N–C Suzuki cross-coupling of N-acylsaccharins, see: Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
  • 50 For amide N–C Suzuki cross-coupling by cooperative catalysis, see: Meng G, Shi S, Szostak M. ACS Catal. 2016; 6 DOI: 10.1021/acscatal.6b02323.