Rev Bras Ginecol Obstet 2016; 38(08): 416-422
DOI: 10.1055/s-0036-1584515
Review Article
Thieme Publicações Ltda Rio de Janeiro, Brazil

Impacts of Preeclampsia on the Brain of the Offspring

Impactos da pré-eclâmpsia no cérebro de nascituros
Frances Dang
1   Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
,
B Anne Croy
1   Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
,
Patrick W. Stroman
2   Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
,
Ernesto A. Figueiró-Filho
1   Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
3   School of Medicine, Universidade Federal do Mato Grosso do Sul, FAMED-UFMS, Campo Grande, MS, Brazil
› Author Affiliations
Further Information

Publication History

24 March 2016

25 April 2016

Publication Date:
15 July 2016 (online)

Abstract

Preeclampsia (PE) is a significant gestational disorder that causes complications in 3–5% of all human pregnancies. Apart from the immediate risks and complications for mother and fetus, both additionally carry elevated lifelong risks for specific complications. Offspring of PE pregnancies (PE-F1) have higher risks for hypertension, stroke and cognitive impairment compared with well-matched offspring (F1) from uncomplicated pregnancies. Prior to the clinical onset of PE, placental angiokines secreted into the maternal plasma are deviated. In many PE patients this includes deficits in placental growth factor (PGF). Our laboratory found that mice genetically-deleted for PGF (PGF − / − ) have altered cerebrovascular and brain neurological development detectable from midgestation to adulthood. We hypothesized that the PGF deficits seen in human PE, deviate fetal cerebrovascular and neurological development in a manner that impairs cognitive functions and elevates stroke risk. Here we summarize the initial analytical outcomes from a pilot study of 8–10 year old male and female PE-F1s and matched controls. Our studies were the first to report magnetic resonance imaging (MRI), magnetic resonance angiography (MRA) and functional brain region assessment by eye movement control and clinical psychometric testing in PE-F1s. Further studies in larger cohorts are essential to define whether there are image-based biomarkers that describe unique anatomical features in PE-F1 brains.

Resumo

A pré-eclampsia (PE) é importante doença gravídica complicando 3–5% de todas as gestações humanas. Além dos riscos imediatos e complicações para a mãe e o feto, a PE associa-se a outros riscos materno-fetais elevados em longo prazo. Nascituros de gestações complicadas por PE (PE-F1) apresentam maiores riscos de desenvolver hipertensão, acidente vascular cerebral e disfunção cognitiva em comparação com prole (F1) de gestações sem complicações. Antes do aparecimento clínico da PE, angiocitocinas placentárias secretadas no plasma materno apresentam-se alteradas. Em muitos pacientes com PE, isso inclui valores plasmáticos reduzidos de Fator de Crescimento Placentário (PGF). Nosso laboratório identificou que camundongos geneticamente não produtores de PGF (PGF − / − ) apresentam alterações vasculares e de desenvolvimento cerebral detectáveis do período gestacional à idade adulta. Nossa hipótese é que os déficits de PGF identificados em mulheres que desenvolveram PE podem desviar o desenvolvimento neurológico e vascular cerebral fetal, de maneira a prejudicar funções cognitivas, elevando o risco de AVC. Aqui resumimos os resultados analíticos iniciais de um estudo piloto com crianças do sexo masculino e feminino de 8–10 anos de idade nascidas de mães que tiveram PE (PE-F1s) comparadas com crianças controle pareadas por idade e sexo. Nossos estudos são os primeiros a relatar a ressonância magnética (RNM), a angiorressonância e a avaliação funcional do cérebro pelo controle de movimento dos olhos e pelo teste clínico psicotécnico em PE-F1s. Estudos adicionais em coortes maiores são essenciais para definir se há biomarcadores com base em imagens que possam descrever características anatômicas únicas em cérebros de crianças PE-F1.

 
  • References

  • 1 American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol 2013; 122 (5) 1122-1131
  • 2 Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol 2009; 33 (3) 130-137
  • 3 Lo JO, Mission JF, Caughey AB. Hypertensive disease of pregnancy and maternal mortality. Curr Opin Obstet Gynecol 2013; 25 (2) 124-132
  • 4 Tranquilli AL, Dekker G, Magee L , et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens 2014; 4 (2) 97-104
  • 5 Ahmed A, Ramma W. Unravelling the theories of pre-eclampsia: are the protective pathways the new paradigm?. Br J Pharmacol 2015; 172 (6) 1574-1586
  • 6 Torry DS, Wang HS, Wang TH, Caudle MR, Torry RJ. Preeclampsia is associated with reduced serum levels of placenta growth factor. Am J Obstet Gynecol 1998; 179 (6 Pt 1): 1539-1544
  • 7 Levine RJ, Maynard SE, Qian C , et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350 (7) 672-683
  • 8 Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension 2009; 53 (6) 944-951
  • 9 Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension 2011; 58 (4) 709-715
  • 10 Mongraw-Chaffin ML, Cirillo PM, Cohn BA. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension 2010; 56 (1) 166-171
  • 11 Magnussen EB, Vatten LJ, Myklestad K, Salvesen KÅ, Romundstad PR. Cardiovascular risk factors prior to conception and the length of pregnancy: population-based cohort study. Am J Obstet Gynecol 2011; 204 (6) 526.e1-526.e8
  • 12 Magnussen EB, Vatten LJ, Lund-Nilsen TI, Salvesen KA, Davey Smith G, Romundstad PR. Prepregnancy cardiovascular risk factors as predictors of pre-eclampsia: population based cohort study. BMJ 2007; 335 (7627) 978
  • 13 Smith GN, Walker MC, Liu A , et al; Pre-Eclampsia New Emerging Team (PE-NET). A history of preeclampsia identifies women who have underlying cardiovascular risk factors. Am J Obstet Gynecol 2009; 200 (1) 58.e1-58.e8
  • 14 Rich-Edwards JW, Fraser A, Lawlor DA, Catov JM. Pregnancy characteristics and women's future cardiovascular health: an underused opportunity to improve women's health?. Epidemiol Rev 2014; 36: 57-70
  • 15 Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening?. BMJ 2002; 325 (7356) 157-160
  • 16 Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ 2001; 323 (7323) 1213-1217
  • 17 Bushnell C, Chireau M. Preeclampsia and Stroke: Risks during and after Pregnancy. Stroke Res Treat 2011; 2011: 858134
  • 18 Rätsep MT, Paolozza A, Hickman AF , et al. Brain structural and vascular anatomy is altered in offspring of pre-eclamptic pregnancies: a pilot study. AJNR Am J Neuroradiol 2015; ; [Epub ahead of print]
  • 19 Rätsep MT, Hickman AF, Maser B , et al. Impact of preeclampsia on cognitive function in the offspring. Behav Brain Res 2016; 302: 175-181
  • 20 Lazdam M, de la Horra A, Pitcher A , et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism?. Hypertension 2010; 56 (1) 159-165
  • 21 Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring's blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol 1991; 98 (10) 1009-1014
  • 22 Tenhola S, Rahiala E, Martikainen A, Halonen P, Voutilainen R. Blood pressure, serum lipids, fasting insulin, and adrenal hormones in 12-year-old children born with maternal preeclampsia. J Clin Endocrinol Metab 2003; 88 (3) 1217-1222
  • 23 Tuovinen S, Räikkönen K, Pesonen AK , et al. Hypertensive disorders in pregnancy and risk of severe mental disorders in the offspring in adulthood: the Helsinki Birth Cohort Study. J Psychiatr Res 2012; 46 (3) 303-310
  • 24 Tuovinen S, Räikkönen K, Kajantie E , et al. Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: the Helsinki Birth Cohort Study. BJOG 2010; 117 (10) 1236-1242
  • 25 Tuovinen S, Eriksson JG, Kajantie E , et al. Maternal hypertensive disorders in pregnancy and self-reported cognitive impairment of the offspring 70 years later: the Helsinki Birth Cohort Study. Am J Obstet Gynecol 2013; 208 (3) 200.e1-200.e9
  • 26 Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke 2009; 40 (4) 1176-1180
  • 27 Davis EF, Lazdam M, Lewandowski AJ , et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 2012; 129 (6) e1552-e1561
  • 28 Tuovinen S, Eriksson JG, Kajantie E, Räikkönen K. Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review. J Am Soc Hypertens 2014; 8 (11) 832-47.e1
  • 29 Whitehouse AJ, Robinson M, Newnham JP, Pennell CE. Do hypertensive diseases of pregnancy disrupt neurocognitive development in offspring?. Paediatr Perinat Epidemiol 2012; 26 (2) 101-108
  • 30 Many A, Fattal A, Leitner Y, Kupferminc MJ, Harel S, Jaffa A. Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia. Hypertens Pregnancy 2003; 22 (1) 25-29
  • 31 Spinillo A, Iasci A, Capuzzo E, Egbe TO, Colonna L, Fazzi E. Two-year infant neurodevelopmental outcome after expectant management and indicated preterm delivery in hypertensive pregnancies. Acta Obstet Gynecol Scand 1994; 73 (8) 625-629
  • 32 Morsing E, Maršál K. Pre-eclampsia- an additional risk factor for cognitive impairment at school age after intrauterine growth restriction and very preterm birth. Early Hum Dev 2014; 90 (2) 99-101
  • 33 Carmeliet P, Ferreira V, Breier G , et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380 (6573) 435-439
  • 34 Charnock-Jones DS. Soluble flt-1 and the angiopoietins in the development and regulation of placental vasculature. J Anat 2002; 200 (6) 607-615
  • 35 Lambert-Messerlian G, Eklund EE, Chien EK , et al. Use of first or second trimester serum markers, or both, to predict preeclampsia. Pregnancy Hypertens 2014; 4 (4) 271-278
  • 36 Powers RW, Roberts JM, Plymire DA , et al. Low placental growth factor across pregnancy identifies a subset of women with preterm preeclampsia: type 1 versus type 2 preeclampsia?. Hypertension 2012; 60 (1) 239-246
  • 37 Staff AC, Benton SJ, von Dadelszen P , et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension 2013; 61 (5) 932-942
  • 38 Zeisler H, Llurba E, Chantraine F , et al. Predictive value of the sFlt-1:PIGF ratio in women with suspected preeclampsia. N Engl J Med 2016; 374 (1) 13-22
  • 39 Brennan LJ, Morton JS, Davidge ST. Vascular dysfunction in preeclampsia. Microcirculation 2014; 21 (1) 4-14
  • 40 Rätsep MT, Carmeliet P, Adams MA, Croy BA. Impact of placental growth factor deficiency on early mouse implant site angiogenesis. Placenta 2014; 35 (9) 772-775
  • 41 Aasa KL, Zavan B, Luna RL , et al. Placental growth factor influences maternal cardiovascular adaptation to pregnancy in mice. Biol Reprod 2015; 92 (2) 44
  • 42 Rätsep MT, Hickman AF, Croy BA. The Elsevier trophoblast research award lecture: Impacts of placental growth factor and preeclampsia on brain development, behaviour, and cognition. Placenta 2016; ; [Epub ahead of print]
  • 43 Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 2011; 71 (3) 406-424
  • 44 Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010; 35 (1) 147-168
  • 45 Menshawi K, Mohr JP, Gutierrez J. A functional perspective on the embryology and anatomy of the cerebral blood supply. J Stroke 2015; 17 (2) 144-158
  • 46 Kathuria S, Gregg L, Chen J, Gandhi D. Normal cerebral arterial development and variations. Semin Ultrasound CT MR 2011; 32 (3) 242-251
  • 47 Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006; 30 (6) 718-729
  • 48 Baker J, Workman M, Bedrick E, Frey MA, Hurtado M, Pearson O. Brains versus brawn: an empirical test of Barker's brain sparing model. Am J Hum Biol 2010; 22 (2) 206-215
  • 49 Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 2015; 149 (2) R91-R102
  • 50 Luna RL, Kay VR, Rätsep MT , et al. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Mol Hum Reprod 2016; 22 (2) 130-142
  • 51 Chaballe L, Close P, Sempels M , et al. Involvement of placental growth factor in Wallerian degeneration. Glia 2011; 59 (3) 379-396
  • 52 Van Overbeeke JJ, Hillen B, Tulleken CA. A comparative study of the circle of Willis in fetal and adult life. The configuration of the posterior bifurcation of the posterior communicating artery. J Anat 1991; 176: 45-54
  • 53 Romero R, Nien JK, Espinoza J , et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 2008; 21 (1) 9-23
  • 54 Cetin I, Mazzocco MI, Giardini V , et al. PlGF in a clinical setting of pregnancies at risk of preeclampsia and/or intrauterine growth restriction. J Matern Fetal Neonatal Med 2016; 19: 1-6 [Epub ahead of print]
  • 55 Paolozza A, Treit S, Beaulieu C, Reynolds JN. Response inhibition deficits in children with Fetal Alcohol Spectrum Disorder: relationship between diffusion tensor imaging of the corpus callosum and eye movement control. Neuroimage Clin 2014; 5: 53-61
  • 56 Paolozza A, Munn R, Munoz DP, Reynolds JN. An in-depth analysis of saccade metrics in children with fetal alcohol spectrum disorder (FASD). Int J Dev Neurosci 2015; 47 (A) 57-58
  • 57 Paolozza A, Munn R, Munoz DP, Reynolds JN. Eye movements reveal sexually dimorphic deficits in children with fetal alcohol spectrum disorder. Front Neurosci 2015; 9: 76