J Neurol Surg A Cent Eur Neurosurg 2017; 78(02): 105-112
DOI: 10.1055/s-0036-1584512
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Early Experience with Combining Awake Craniotomy and Intraoperative Navigable Ultrasound for Resection of Eloquent Region Gliomas

Aliasgar Moiyadi
1   Department of Neurosurgery, Tata Memorial Centre, Mumbai, India
,
Prakash Shetty
1   Department of Neurosurgery, Tata Memorial Centre, Mumbai, India
› Author Affiliations
Further Information

Publication History

14 October 2015

24 March 2016

Publication Date:
01 July 2016 (online)

Abstract

Introduction Optimal resection of tumors in eloquent locations requires a combination of intraoperative imaging and functional monitoring during surgery. Combining awake surgery with intraoperative magnetic resonanceis logistically challenging. Navigable ultrasound (US) is a useful alternative in such cases.

Methods A total of 22 subjects with eloquent tumors were operated on (1 intended biopsy and 21 intended radical resections) using combined modality three-dimensional (3D) US and awake craniotomy with intraoperative clinical monitoring. We describe the technical details for these cases specifically addressing the feasibility of combining the two modalities.

Results US was used for resection control in 18 cases. There were technical limitations in three cases. Transient intraoperative worsening was encountered in eight, necessitating premature termination of the procedure. All patients tolerated the awake procedure well. Mean duration of the surgery was 3.2 hours. Radical resections were obtained in 14 of 18 where this was intended and in 12 of the 13 where there was no adverse intraoperative monitoring event prompting premature termination of the resection.

Conclusions Combining awake surgery with 3DUS is feasible and beneficial. It does not entail any additional surgical workflow modification or patient discomfort. This combined modality intraoperative monitoring can be beneficial for eloquent region tumors.

 
  • References

  • 1 Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 2011; 115 (1) 3-8
  • 2 Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 2011; 12 (11) 997-1003
  • 3 Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 2011; 12 (11) 1062-1070
  • 4 Sæther CA, Torsteinsen M, Torp SH, Sundstrøm S, Unsgård G, Solheim O. Did survival improve after the implementation of intraoperative neuronavigation and 3D ultrasound in glioblastoma surgery? A retrospective analysis of 192 primary operations. J Neurol Surg A Cent Eur Neurosurg 2012; 73 (2) 73-78
  • 5 Moiyadi AV, Shetty PM, Mahajan A, Udare A, Sridhar E. Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir (Wien) 2013; 155 (12) 2217-2225
  • 6 Nabavi A, Goebel S, Doerner L, Warneke N, Ulmer S, Mehdorn M. Awake craniotomy and intraoperative magnetic resonance imaging: patient selection, preparation, and technique. Top Magn Reson Imaging 2009; 19 (4) 191-196
  • 7 Gronningsaeter A, Kleven A, Ommedal S , et al. SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 2000; 47 (6) 1373-1379 ; discussion 1379–1380
  • 8 Sawaya R. Extent of resection in malignant gliomas: a critical summary. J Neurooncol 1999; 42 (3) 303-305
  • 9 Jakola AS, Myrmel KS, Kloster R , et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 2012; 308 (18) 1881-1888
  • 10 Solheim O, Selbekk T, Jakola AS, Unsgård G. Ultrasound-guided operations in unselected high-grade gliomas—overall results, impact of image quality and patient selection. Acta Neurochir (Wien) 2010; 152 (11) 1873-1886
  • 11 Unsgaard G, Selbekk T, Brostrup Müller T , et al. Ability of navigated 3D ultrasound to delineate gliomas and metastases—comparison of image interpretations with histopathology. Acta Neurochir (Wien) 2005; 147 (12) 1259-1269 ; discussion 1269
  • 12 Renovanz M, Hickmann AK, Henkel C, Nadji-Ohl M, Hopf NJ. Navigated versus non-navigated intraoperative ultrasound: is there any impact on the extent of resection of high-grade gliomas? A retrospective clinical analysis. J Neurol Surg A Cent Eur Neurosurg 2014; 75 (3) 224-230
  • 13 Kim SS, McCutcheon IE, Suki D , et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery 2009; 64 (5) 836-845 ; discussion 345–346
  • 14 Pereira LC, Oliveira KM, L'Abbate GL, Sugai R, Ferreira JA, da Motta LA. Outcome of fully awake craniotomy for lesions near the eloquent cortex: analysis of a prospective surgical series of 79 supratentorial primary brain tumors with long follow-up. Acta Neurochir (Wien) 2009; 151 (10) 1215-1230
  • 15 Sacko O, Lauwers-Cances V, Brauge D, Sesay M, Brenner A, Roux FE. Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurgery 2011; 68 (5) 1192-1198 ; discussion 1198–1199
  • 16 Lu J, Wu J, Yao C , et al. Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. J Clin Neurosci 2013; 20 (9) 1280-1287
  • 17 Parney IF, Goerss SJ, McGee K, Huston III J, Perkins WJ, Meyer FB. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI. World Neurosurg 2010; 73 (5) 547-551
  • 18 Peruzzi P, Puente E, Bergese S, Chiocca EA. Intraoperative MRI (ioMRI) in the setting of awake craniotomies for supratentorial glioma resection. Acta Neurochir Suppl (Wien) 2011; 109: 43-48
  • 19 Tuominen J, Yrjänä S, Ukkonen A, Koivukangas J. Awake craniotomy may further improve neurological outcome of intraoperative MRI-guided brain tumor surgery. Acta Neurochir (Wien) 2013; 155 (10) 1805-1812
  • 20 Leuthardt EC, Lim CC, Shah MN , et al. Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery 2011; 69 (1) 194-205 ; discussion 205–206
  • 21 Goebel S, Nabavi A, Schubert S, Mehdorn HM. Patient perception of combined awake brain tumor surgery and intraoperative 1.5-T magnetic resonance imaging: the Kiel experience. Neurosurgery 2010; 67 (3) 594-600 ; discussion 600
  • 22 Rygh OM, Selbekk T, Torp SH, Lydersen S, Hernes TA, Unsgaard G. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien) 2008; 150 (10) 1033-1041 ; discussion 1042
  • 23 Moiyadi A, Shetty P. Navigable intraoperative ultrasound and fluorescence-guided resections are complementary in resection control of malignant gliomas: one size does not fit all. J Neurol Surg A Cent Eur Neurosurg 2014; 75 (6) 434-441
  • 24 Yordanova YN, Moritz-Gasser S, Duffau H. Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J Neurosurg 2011; 115 (2) 232-239
  • 25 Duffau H, Peggy Gatignol ST, Mandonnet E, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 2008; 109 (3) 461-471
  • 26 Rasmussen Jr IA, Lindseth F, Rygh OM , et al. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 2007; 149 (4) 365-378
  • 27 Berntsen EM, Gulati S, Solheim O , et al. Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery 2010; 67 (2) 251-264
  • 28 Šteňo A, Karlík M, Mendel P, Čík M, Šteňo J. Navigated three-dimensional intraoperative ultrasound-guided awake resection of low-grade glioma partially infiltrating optic radiation. Acta Neurochir (Wien) 2012; 154 (7) 1255-1262
  • 29 Nossek E, Korn A, Shahar T , et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 2011; 114 (3) 738-746