Synlett 2017; 28(10): 1173-1176
DOI: 10.1055/s-0036-1558965
letter
© Georg Thieme Verlag Stuttgart · New York

Application of Triphenylammonium Tricyanomethanide as an Efficient and Recyclable Nanostructured Molten-Salt Catalyst for the Synthesis of N-Benzylidene-2-arylimidazo[1,2-a]pyridin-3-amines

Saeed Baghery*
a   Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran   Email: saadybaghery@yahoo.com   Email: zolfi@basu.ac.ir   Email: mzolfigol@yahoo.com
,
Mohammad Ali Zolfigol*
a   Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran   Email: saadybaghery@yahoo.com   Email: zolfi@basu.ac.ir   Email: mzolfigol@yahoo.com
,
Romana Schirhagl
b   Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
,
Masoumeh Hasani
b   Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
c   Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
› Author Affiliations
Further Information

Publication History

Received: 13 December 2016

Accepted after revision: 14 February 2017

Publication Date:
28 February 2017 (online)


Abstract

Triphenylammonium tricyanomethanide (Ph3NH)[C(CN)3] was synthesized and used as an efficient and recyclable nanostructured molten-salt (NMS) catalyst for the synthesis of N-benzylidene-2-arylimidazo[1,2-a]pyridin-3-amines by the reaction of various (het)aryl aldehydes with trimethylsilyl cyanide and pyridin-2-amine under solvent-free conditions at 50 °C. The NMS catalyst could be simply recycled and reused several times without significant loss of its catalytic activity.

Supporting Information

 
  • References

  • 1 Noble RD, Gin DL. J. Membr. Sci. 2011; 369: 1-1
  • 2 Scovazzo P, Kieft J, Finan D, Noble RD, Koval CA. J. Membr. Sci. 2004; 238: 57-57
  • 3 Bara JE, Gabriel CJ, Lessmann S, Carlisle TK, Finotello A, Gin DL, Noble RD. Ind. Eng. Chem. Res. 2007; 46: 5380-5380
  • 4 Chowdhury S, Mohan RS, Scott JL. Tetrahedron 2007; 63: 2363-2363
  • 5 Hajipour AR, Ghayeb Y, Sheikhan N, Ruoho A. Tetrahedron Lett. 2009; 50: 5649-5649
  • 6 Wasserscheid P, Keim W. Angew. Chem. Int. Ed. 2000; 39: 3772-3772
  • 7 Dupont J, de Souza RF, Suarez PA. Z. Chem. Rev. 2002; 102: 3667-3667
  • 8 Welton T. Chem. Rev. 1999; 99: 2071-2071
  • 9 Seddon KR. J. Chem. Technol. Biotechnol. 1997; 68: 351-351
  • 10 Wilkes JS. Green Chem. 2002; 4: 73-73
  • 11 Wan J, Zheng C.-J, Fung M.-K, Liu X.-K, Lee C.-S, Zhang X.-H. J. Mater. Chem. 2012; 22: 4502-4502
  • 12 Song G, Zhang Y, Li X. Organometallics 2008; 27: 1936-1936
    • 13a John A, Shaikh MM, Ghosh P. Dalton Trans. 2009; 10581-10581
    • 13b Enguehard-Gueiffier C, Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888-888
  • 14 Rival Y, Grassy G, Michel G. Chem. Pharm. Bull. 1992; 40: 1170-1170
  • 15 Fisher MH, Lusi A. J. Med. Chem. 1972; 15: 982-982
  • 16 Rival Y, Grassy G, Taudou A, Ecalle R. Eur. J. Med. Chem. 1991; 26: 13-13
  • 17 Hamdouchi C, de Blas J, del Prado M, Gruber J, Heinz BA, Vance L. J. Med. Chem. 1999; 42: 50-50
  • 18 Kaminsky JJ, Doweyko AM. J. Med. Chem. 1999; 40: 427-427
  • 19 Rupert KC, Henry JR, Dodd JH, Wadsworth SA, Cavender DE, Olini GC, Fahmy B, Siekierka JJ. Bioorg. Med. Chem. Lett. 2003; 13: 347-347
  • 20 Hammad M, Mequid A, Ananni ME, Shafik N. Egypt. J. Chem. 1987; 29: 5401-5401
  • 21 Badaway E, Kappe T. Eur. J. Med. Chem. 1995; 30: 327-327
  • 22 Hranjec M, Kralj M, Piantanida I, Sedić M, Šuman L, Pavelić K, Karminski-Zamola G. J. Med. Chem. 2007; 50: 5696-5696
  • 23 Kotovskaya SK, Baskakova ZM, Charushin VN, Chupakhin ON, Belanov EF, Bormotov NI, Balakhnin SM, Serova OA. Pharm. Chem. J. 2005; 39: 574-574
  • 24 Lhassani M, Chavignon O, Chezal J.-M, Teulade J.-C, Chapat J.-P, Snoeck R, Andrei G, Balzarini J, De Clerc E, Gueiffier A. Eur. J. Med. Chem. 1999; 34: 271-271
  • 25 Guchhait SK, Chaudhary V, Madaan C. Org. Biomol. Chem. 2012; 10: 9271-9271
  • 26 Adib M, Sheibani S, Zhu L.-G, Mirzaei P. Tetrahedron Lett. 2008; 49: 5108-5108
  • 27 Adib M, Sheibani S, Bijanzadeh HR, Zhu L.-G. Tetrahedron 2008; 64: 10681-10681
  • 28 Abdollahi-Alibeik M, Rezaeipoor-Anari A. Catal. Sci. Technol. 2014; 4: 1151-1151
  • 29 Venkatesham R, Manjula A, Vittal Rao B. J. Heterocycl. Chem. 2011; 48: 942-942
    • 30a Ohta VM, Masaki M. Bull. Chem. Soc. Jpn. 1960; 33: 1392-1392
    • 30b Mohan DC, Rao SN, Adimurthy S. J. Org. Chem. 2013; 78: 1266-1266
    • 30c Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555-1555
    • 30d Liu P, Fang L.-s, Lei X, Lin G.-q. Tetrahedron Lett. 2010; 51: 4605-4605
    • 30e Pericherla K, Kaswan P, Pandey K, Kumar A. Synthesis 2015; 47: 887-887
    • 30f Zhu D.-J, Liu M.-C, Ding J.-C, Wu H.-Y. J. Braz. Chem. Soc. 2009; 20: 482-482
    • 30g Lei S, Chen GJ, Mai Y, Chen L, Cai H, Tan J, Cao H. Adv. Synth. Catal. 2016; 358: 67-67
    • 30h Wang C, Lei S, Cao H, Qiu S, Liu J, Deng H, Yan C. J. Org. Chem. 2015; 80: 12725-12725
    • 30i Lei S, Mai Y, Yan C, Mao J, Cao H. Org. Lett. 2016; 18: 3582-3582
    • 30j Cao H, Zhan H, Lin Y, Lin X, Du Z, Jiang H. Org. Lett. 2012; 14: 1688-1688
    • 30k Cao H, Liu X, Zhao L, Cen J, Lin J, Zhu O, Fu M. Org. Lett. 2014; 16: 146-146
    • 30l Lei S, Cao H, Chen L, Liu J, Cai H, Tan J. Adv. Synth. Catal. 2015; 357: 3109-3109
    • 31a Zolfigol MA, Afsharnadery F, Baghery S, Salehzadeh S, Maleki F. RSC Adv. 2015; 5: 75555-75555
    • 31b Zolfigol MA, Safaiee M, Afsharnadery F, Bahrami-Nejad N, Baghery S, Salehzadeh S, Maleki F. RSC Adv. 2015; 5: 100546-100546
    • 31c Zolfigol MA, Kiafar M, Yarie M, Taherpour A, Saeidi-Rad M. RSC Adv. 2016; 6: 50100-50100
    • 31d Zolfigol MA, Khazaei A, Alaie S, Baghery S, Maleki F, Bayat Y, Asghari A. RSC Adv. 2016; 6: 58667-58667
  • 32 Triphenylammonium Tricyanomethanide (Ph3NH)[C(CN)3] Ph3N (3 mmol, 0.736 g) was added to a solution of HC(CN)3 (3 mmol, 0.273 g) in H2O (5 mL), and the mixture was stirred for 3 h at 50 °C. The solvent was then evaporated under reduced pressure and the resulting white powder was dried under reduced pressure at 100 °C for 3 h. The white solid was washed with Et2O to remove any unreacted starting materials and then dried under vacuum to give a white solid; yield: 0.979 g (97%); mp >350 °C. IR (KBr): 3377, 3037, 2987, 2228, 2110, 1639, 1474, 1389, 1062, 887 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 6.99 (d, J = 8.4 Hz, 6 H, ArH), 7.04 (t, J = 7.4 Hz, 3 H, ArH), 7.31 (t, J = 8.0 Hz, 6 H, ArH), 8.55 (s, 1 H, NH). 13C NMR (100 MHz, DMSO-d 6): δ = 41.9, 123.3, 124.1, 129.9, 166.4, 166.6. MS: m/z = 336.3 [M+]. For full analytical data, see the Supporting Information. N-benzylidene-2-arylimidazo[1,2-a]pyridin-3-amines 4; General Procedure (Ph3NH)[C(CN)3] (1 mol%; 0.0034 g) was added to and mixed with aldehyde 1 (2 mmol), TMSCN (2; 2 mmol; 0.099 g), and pyridin-2-amine (3; 1 mmol; 0.094 g), and the mixture was heated at 50 °C for the appropriate time (Table 3). When the reaction was complete [TLC, hexane–EtOAc (5:2)], the mixture was washed with H2O (10 mL) and filtered to separate the catalyst from the other materials. (The reaction mixture was insoluble in H2O, and the catalyst was soluble in H2O.) The crude product was purified by crystallization from EtOH–H2O (10:1). All products were identified by comparison of their physical data with those reported in the literature; for spectroscopic data, see the Supporting Information.