RSS-Feed abonnieren
DOI: 10.1055/s-0035-1569662
DWI und PET/MRT nach Strahlentherapie bei malignen Kopf-Hals-Tumoren[1]
Diffusion-weighted and PET/MR imaging after radiation therapy for malignant head and neck tumorsPublikationsverlauf
Publikationsdatum:
23. Dezember 2015 (online)
Zusammenfassung
Die Interpretation von Bildgebungsbefunden des bestrahlten Halses stellt wegen der durch die Strahlentherapie induzierten (radiogenen) Gewebeveränderungen, des variablen Erscheinungsbilds von Tumorrezidiven sowie funktions- und stoffwechselbezogener Phänomene, die dem Erscheinungsbild einer Krankheit zum Verwechseln ähnlich sind, eine Herausforderung dar. Zur Erleichterung der Diagnose werden daher in der klinischen Praxis immer häufiger folgende Verfahren angewendet: die morphologisch orientierte MRT (Magnetresonanztomografie), die DWI (diffusionsgewichtete Bildgebung), die PET/CT (Positronenemissionstomografie mit Computertomografie) sowie die Fusion von PET- und MRT-Befunden mithilfe einer entsprechenden Software. Da MRT und PET in vielen Fällen komplementäre Informationen liefern, lässt die kombinierte PET/MRT-Bildgebung auf eine Erleichterung der Unterscheidung zwischen Tumorrezidiven, radiogenen Veränderungen und Komplikationen hoffen. Im Mittelpunkt dieses Review stehen die klinischen Anwendungen von DWI und PET/MRT am bestrahlten Hals und die Erörterung des Zugewinns bei der Lösung diagnostischer Probleme durch die multiparametrische Bildgebung. Radiologen sollten wissen, welche DWI- und PET/MRT-Befunde kennzeichnend für die wichtigsten strahlentherapieinduzierten Gewebeveränderungen und die potenziellen Komplikationen sind: für Ödeme, Fibrosen, Vernarbungen, Weichgewebenekrosen, Knochen- und Knorpelnekrosen, Hirnnervenlähmungen und radiogene Arteriosklerose, Hirnnekrosen und Schilddrüsenerkrankungen. DWI und PET/MRT ergänzen sich auch bei der Fahndung nach residualem Tumorgewebe und Rezidiven. Mögliche technik-, funktions- oder stoffwechselbedingte Fehlerquellen bei der Interpretation sollten erkannt und vermieden werden. Vertrautheit mit den Charakteristika der zu erwartenden DWI- und PET/MRT-Befunde, mit potenziellen Komplikationen und Therapieversagen nach Strahlentherapie erhöht die diagnostische Sicherheit bei der Interpretation von Aufnahmen des bestrahlten Halses.
Abstract
Interpreting imaging studies of the irradiated neck constitutes a challenge because of radiation therapy-induced tissue alterations, the variable appearances of recurrent tumors, and functional and metabolic phenomena that mimic disease. Therefore, morphologic magnetic resonance (MR) imaging, diffusion-weighted (DW) imaging, positron emission tomography with computed tomography (PET/CT), and software fusion of PET and MR imaging data sets are increasingly used to facilitate diagnosis in clinical practice. Because MR imaging and PET often yield complementary information, PET/MR imaging holds promise to facilitate differentiation of tumor recurrence from radiation therapy-induced changes and complications. This review focuses on clinical applications of DW and PET/MR imaging in the irradiated neck and discusses the added value of multiparametric imaging to solve diagnostic dilemmas. Radiologists should understand key features of radiation therapy-induced tissue alterations and potential complications seen at DW and PET/MR imaging, including edema, fibrosis, scar tissue, soft-tissue necrosis, bone and cartilage necrosis, cranial nerve palsy, and radiation therapy-induced arteriosclerosis, brain necrosis, and thyroid disorders. DW and PET/MR imaging also play a complementary role in detection of residual and recurrent disease. Interpretation pitfalls due to technical, functional, and metabolic phenomena should be recognized and avoided. Familiarity with DW and PET/MR imaging features of expected findings, potential complications, and treatment failure after radiation therapy increases diagnostic confidence when interpreting images of the irradiated neck.
1 © 2015 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2015; 35: 1502 – 1527. Online published in 10.1148 /rg.2015140029. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.
-
Literatur
- 1 Lefebvre JL. Laryngeal preservation in head and neck cancer: multidisciplinary approach. Lancet Oncol 2006; 7: 747-755
- 2 Argiris A, Karamouzis MV, Raben D et al. Head and neck cancer. Lancet 2008; 371: 1695-1709
- 3 Corvò R. Evidence-based radiation oncology in head and neck squamous cell carcinoma. Radiother Oncol 2007; 85: 156-170
- 4 Saito N, Nadgir RN, Nakahira M et al. Posttreatment CT and MR imaging in head and neck cancer: what the radiologist needs to know. RadioGraphics 2012; 32: 1261-1282; discussion 1282 – 1284
- 5 Anonymous. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT): contents. J ICRU 2010; 10 NP. DOI: 10.1093/jicru/ndq002.
- 6 Lapeyre M, Toledano I, Bourry N et al. Target volume delineation for head and neck cancer intensity-modulated radiotherapy [in French]. Cancer Radiother 2011; 15: 466-472
- 7 Eisbruch A, Foote RL, O’Sullivan B et al. Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin Radiat Oncol 2002; 12: 238-249
- 8 Yao M, Dornfeld KJ, Buatti JM et al. Intensity-modulated radiation treatment for head-and-neck squamous cell carcinoma: the University of Iowa experience. Int J Radiat Oncol Biol Phys 2005; 63: 410-421
- 9 Chao KS, Wippold FJ, Ozyigit G et al. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int J Radiat Oncol Biol Phys 2002; 53: 1174-1184
- 10 Harari PM, Song S, Tomé WA. Emphasizing conformal avoidance versus target definition for IMRT planning in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2010; 77: 950-958
- 11 Gorthi S, Duay V, Houhou N et al. Segmentation of head and neck lymph node regions for radiation therapy planning using active contour-based atlas registration. IEEE J Sel Top Signal Process 2009; 3: 135-147
- 12 Stone HB, Coleman CN, Anscher MS et al. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 2003; 4: 529-536
- 13 Becker M, Schroth G, Zbären P et al. Long-term changes induced by high-dose irradiation of the head and neck region: imaging findings. RadioGraphics 1997; 17: 5-26
- 14 Vandecaveye V, De Keyzer F, Dirix P et al. Applications of diffusion-weighted magnetic resonance imaging in head and neck squamous cell carcinoma. Neuroradiology 2010; 52: 773-784
- 15 Vandecaveye V, De Keyzer F, Nuyts S et al. Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo) radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 2007; 67: 960-971
- 16 Kwee TC, Takahara T, Ochiai R et al. Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 2010; 51: 1549-1558
- 17 Torigian DA, Zaidi H, Kwee TC et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013; 267: 26-44
- 18 Varoquaux A, Rager O, Poncet A et al. Detection and quantification of focal uptake in head and neck tumours: 18F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 2014; 41: 462-475
- 19 Vargas MI, Becker M, Garibotto V et al. Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 2013; 26: 57-69
- 20 Purohit BS, Dulguerov P, Burkhardt K et al. Dedifferentiated laryngeal chondrosarcoma: combined morphologic and functional imaging with positron-emission tomography/magnetic resonance imaging. Laryngoscope 2014; 124: E274-E277
- 21 Becker M, Zaidi H. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI. Br J Radiol 2014; 87: 20130677
- 22 Thoeny HC. Diffusion-weighted MRI in head and neck radiology: applications in oncology. Cancer Imaging 2011; 10: 209-214
- 23 Vandecaveye V, Dirix P, De Keyzer F et al. Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2012; 82: 1098-1107
- 24 King AD, Chow KK, Yu KH et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2013; 266: 531-538
- 25 Koç O, Paksoy Y, Erayman I et al. Role of diffusion weighted MR in the discrimination diagnosis of the cystic and/or necrotic head and neck lesions. Eur J Radiol 2007; 62: 205-213
- 26 Varoquaux A, Rager O, Lovblad KO et al. Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 2013; 40: 842-852
- 27 Chawla S, Kim S, Wang S et al. Diffusion-weighted imaging in head and neck cancers. Future Oncol 2009; 5: 959-975
- 28 Choi SH, Paeng JC, Sohn CH et al. Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J Nucl Med 2011; 52: 1056-1062
- 29 Fruehwald-Pallamar J, Czerny C, Mayerhoefer ME et al. Functional imaging in head and neck squamous cell carcinoma: correlation of PET/CT and diffusion-weighted imaging at 3 Tesla. Eur J Nucl Med Mol Imaging 2011; 38: 1009-1019
- 30 Nakajo M, Nakajo M, Kajiya Y et al. FDG PET/CT and diffusion-weighted imaging of head and neck squamous cell carcinoma: comparison of prognostic significance between primary tumor standardized uptake value and apparent diffusion coefficient. Clin Nucl Med 2012; 37: 475-480
- 31 Abdel Razek AA, Kandeel AY, Soliman N et al. Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes. AJNR Am J Neuroradiol 2007; 28: 1146-1152
- 32 Tshering Vogel DW, Zbaeren P, Geretschlaeger A et al. Diffusion-weighted MR imaging including bi-exponential fitting for the detection of recurrent or residual tumour after (chemo) radiotherapy for laryngeal and hypopharyngeal cancers. Eur Radiol 2013; 23: 562-569
- 33 Abgral R, Querellou S, Potard G et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up?. J Nucl Med 2009; 50: 24-29
- 34 Hustinx R, Lucignani G. PET/CT in head and neck cancer: an update. Eur J Nucl Med Mol Imaging 2010; 37: 645-651
- 35 Quon A, Fischbein NJ, McDougall IR et al. Clinical role of 18F-FDG PET/CT in the management of squamous cell carcinoma of the head and neck and thyroid carcinoma. J Nucl Med 2007; 48: S58-S67
- 36 Blodgett TM, Fukui MB, Snyderman CH et al. Combined PET-CT in the head and neck. I. Physiologic, altered physiologic, and artifactual FDG uptake. RadioGraphics 2005; 25: 897-912
- 37 Machtay M, Natwa M, Andrel J et al. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck 2009; 31: 195-201
- 38 Haerle SK, Huber GF, Hany TF et al. Is there a correlation between 18F-FDG-PET standardized uptake value, T-classification, histological grading and the anatomic subsites in newly diagnosed squamous cell carcinoma of the head and neck?. Eur Arch Otorhinolaryngol 2010; 267: 1635-1640
- 39 Imsande HM, Davison JM, Truong MT et al. Use of 18F-FDG PET/CT as a predictive biomarker of outcome in patients with head-and-neck non-squamous cell carcinoma. AJR Am J Roentgenol 2011; 197: 976-980
- 40 Higgins KA, Hoang JK, Roach MC et al. Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUVmean has superior prognostic value. Int J Radiat Oncol Biol Phys 2012; 82: 548-553
- 41 Wong RJ, Lin DT, Schöder H et al. Diagnostic and prognostic value of 18F fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 2002; 20: 4199-4208
- 42 Schöder H, Carlson DL, Kraus DH et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med 2006; 47: 755-762
- 43 Wang CH, Liang JA, Ding HJ et al. Utility of TL-201 SPECT in clarifying false-positive FDG-PET findings due to osteoradionecrosis in head and neck cancer. Head Neck 2010; 32: 1648-1654
- 44 Purohit BS, Ailianou A, Dulguerov N et al. FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 2014; 5: 585-602
- 45 Zhuang H, Yu JQ, Alavi A. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 2005; 43: 121-134
- 46 Wiesmüller M, Quick HH, Navalpakkam B et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 2013; 40: 12-21
- 47 Arabi H, Rager O, Alem A et al. Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol 2015; 17: 2264-2276
- 48 Basu S, Zaidi H, Houseni M et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007; 37: 223-239
- 49 Debnam JM. Imaging of the head and neck following radiation treatment. Pathol Res Int 2011; 2011: 607820
- 50 Moloney EC, Brunner M, Alexander AJ et al. Quantifying fibrosis in head and neck cancer treatment: an overview. Head Neck 2015; 37: 1225-1231
- 51 Hirota S, Tsujino K, Oshitani T et al. Subcutaneous fibrosis after whole neck irradiation. Int J Radiat Oncol Biol Phys 2002; 52: 937-943
- 52 Wratten CR, Poulsen MG, Williamson S et al. Effect of surgery on normal tissue toxicity in patients treated with accelerated radiotherapy. Acta Oncol 2002; 41: 56-62
- 53 Deng J, Ridner SH, Dietrich MS et al. Prevalence of secondary lymphedema in patients with head and neck cancer. J Pain Symptom Manage 2012; 43: 244-252
- 54 Nömayr A, Lell M, Sweeney R et al. MRI appearance of radiation-induced changes of normal cervical tissues. Eur Radiol 2001; 11: 1807-1817
- 55 Krabbe CA, Pruim J, Dijkstra PU et al. 18F-FDG PET as a routine posttreatment surveillance tool in oral and oropharyngeal squamous cell carcinoma: a prospective study. J Nucl Med 2009; 50: 1940-1947
- 56 King AD, Keung CK, Yu KH et al. T2-weighted MR imaging early after chemoradiotherapy to evaluate treatment response in head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 2013; 34: 1237-1241
- 57 Fajardo LF. The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol 2005; 44: 13-22
- 58 Farina D, Borghesi A, Botturi E et al. Treatment monitoring of paranasal sinus tumors by magnetic resonance imaging. Cancer Imaging 2010; 10: 183-193
- 59 Glazer HS, Niemeyer JH, Balfe DM et al. Neck neoplasms: MR imaging. II. Posttreatment evaluation. Radiology 1986; 160: 349-354
- 60 Sadick M, Schoenberg SO, Hoermann K et al. Current oncologic concepts and emerging techniques for imaging of head and neck squamous cell cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg 2012; 11: Doc08
- 61 Lell M, Baum U, Greess H et al. Head and neck tumors: imaging recurrent tumor and post-therapeutic changes with CT and MRI. Eur J Radiol 2000; 33: 239-247
- 62 Mukherji SK, Wolf GT. Evaluation of head and neck squamous cell carcinoma after treatment. AJNR Am J Neuroradiol 2003; 24: 1743-1746
- 63 Becker M, Zbären P, Casselman JW et al. Neoplastic invasion of laryngeal cartilage: reassessment of criteria for diagnosis at MR imaging. Radiology 2008; 249: 551-559
- 64 Curtin HD. The “evil gray”: cancer and cartilage. Radiology 2008; 249: 410-412
- 65 Teymoortash A, Simolka N, Schrader C et al. Lymphocyte subsets in irradiation-induced sialadenitis of the submandibular gland. Histopathology 2005; 47: 493-500
- 66 Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. RadioGraphics 1999; 19: 61-77; quiz 150 – 151
- 67 Liang Y, Bydder M, Yashar CM et al. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys 2013; 85: 406-414
- 68 Huang W, Yang Y, Sun Z et al. Early radiation-induced bone marrow injury: serial MR imaging during initial 4 weeks after irradiation. Acad Radiol 2009; 16: 733-738
- 69 Long NM, Smith CS. Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging. Insights Imaging 2011; 2: 679-698
- 70 Hunter SE, Scher RL. Clinical implications of radionecrosis to the head and neck surgeon. Curr Opin Otolaryngol Head Neck Surg 2003; 11: 103-106
- 71 Debnam JM, Garden AS, Ginsberg LE. Benign ulceration as a manifestation of soft tissue radiation necrosis: imaging findings. AJNR Am J Neuroradiol 2008; 29: 558-562
- 72 Chen MY, Mai HQ, Sun R et al. Clinical findings and imaging features of 67 nasopharyngeal carcinoma patients with postradiation nasopharyngeal necrosis. Chin J Cancer 2013; 32: 533-538
- 73 Chin SC, Jen YM, Chen CY et al. Necrotic nasopharyngeal mucosa: an ominous MR sign of a carotid artery pseudoaneurysm. AJNR Am J Neuroradiol 2005; 26: 414-416
- 74 Hao SP, Chen HC, Wei FC et al. Systematic management of osteoradionecrosis in the head and neck. Laryngoscope 1999; 109: 1324-1327; discussion 1327 – 1328
- 75 Avril L, Lombardi T, Ailianou A et al. Radiolucent lesions of the mandible: a pattern-based approach to diagnosis. Insights Imaging 2014; 5: 85-101
- 76 Gevorgyan A, Wong K, Poon I et al. Osteoradionecrosis of the mandible: a case series at a single institution. J Otolaryngol Head Neck Surg 2013; 42: 46
- 77 Teng MS, Futran ND. Osteoradionecrosis of the mandible. Curr Opin Otolaryngol Head Neck Surg 2005; 13: 217-221
- 78 Wu LA, Liu HM, Wang CW et al. Osteoradionecrosis of the upper cervical spine after radiation therapy for head and neck cancer: differentiation from recurrent or metastatic disease with MR imaging. Radiology 2012; 264: 136-145
- 79 Bhatia KS, King AD, Paunipagar BK et al. MRI findings in patients with severe trismus following radiotherapy for nasopharyngeal carcinoma. Eur Radiol 2009; 19: 2586-2593
- 80 Alhilali L, Reynolds AR, Fakhran S. Osteoradionecrosis after radiation therapy for head and neck cancer: differentiation from recurrent disease with CT and PET/CT imaging. AJNR Am J Neuroradiol 2014; 35: 1405-1411
- 81 Cheung JP, Wei WI, Luk KD. Cervical spine complications after treatment of nasopharyngeal carcinoma. Eur Spine J 2013; 22: 584-592
- 82 Hermans R, Pameijer FA, Mancuso AA et al. CT findings in chondroradionecrosis of the larynx. AJNR Am J Neuroradiol 1998; 19: 711-718
- 83 Zbären P, Caversaccio M, Thoeny HC et al. Radionecrosis or tumor recurrence after radiation of laryngeal and hypopharyngeal carcinomas. Otolaryngol Head Neck Surg 2006; 135: 838-843
- 84 Dorresteijn LD, Kappelle AC, Scholz NM et al. Increased carotid wall thickening after radiotherapy on the neck. Eur J Cancer 2005; 41: 1026-1030
- 85 Lei-xing X, Jing-jing G, Jing-xue N et al. Combined application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging in early diagnosis of vulnerable carotid atherosclerotic plaques. J Int Med Res 2014; 42: 213-223
- 86 Rominger A, Saam T, Wolpers S et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009; 50: 1611-1620
- 87 Colevas AD, Read R, Thornhill J et al. Hypothyroidism incidence after multimodality treatment for stage III and IV squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 2001; 51: 599-604
- 88 Miller-Thomas MM, Kumar AJ, Sellin RV et al. The shrinking thyroid: how does thyroid size change following radiation therapy for laryngeal cancer?. AJNR Am J Neuroradiol 2009; 30: 613-616
- 89 Kim SS, Kim SJ, Bae YT et al. Factors associated with the development of new onset diffuse thyroid F18-fluorodeoxyglucose uptake after treatment of breast cancer in patients without a history of thyroid disease or thyroid dysfunction. Thyroid 2012; 22: 53-58
- 90 Abouzied MM, Crawford ES, Nabi HA. 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 2005; 33: 145-155; quiz 162-163
- 91 Bonabi S, Schmidt F, Broglie MA et al. Thyroid incidentalomas in FDG-PET/CT: prevalence and clinical impact. Eur Arch Otorhinolaryngol 2012; 269: 2555-2560
- 92 Jain R, Narang J, Sundgren PM et al. Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 2010; 100: 17-29
- 93 Shah R, Vattoth S, Jacob R et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. RadioGraphics 2012; 32: 1343-1359
- 94 Policeni BA, Smoker WR. Pathologic conditions of the lower cranial nerves IX, X, XI, and XII. Neuroimaging Clin N Am 2008; 18: 347-368, xi
- 95 Werner MK, Pfannenberg C, Öksüz MO. Nonspecific FDG uptake in the tongue mimicking the primary tumor in a patient with cancer of unknown primary. Clin Imaging 2011; 35: 405-407
- 96 Becker M, Masterson K, Delavelle J et al. Imaging of the optic nerve. Eur J Radiol 2010; 74: 299-313
- 97 Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci 2008; 15: 95-100
- 98 Zhao Z, Lan Y, Bai S et al. Late-onset radiation-induced optic neuropathy after radiotherapy for nasopharyngeal carcinoma. J Clin Neurosci 2013; 20: 702-706
- 99 Abrigo JM, King AD, Leung SF et al. MRI of radiation-induced tumors of the head and neck in post-radiation nasopharyngeal carcinoma. Eur Radiol 2009; 19: 1197-1205
- 100 Cai PQ, Wu YP, Li L et al. CT and MRI of radiation-induced sarcomas of the head and neck following radiotherapy for nasopharyngeal carcinoma. Clin Radiol 2013; 68: 683-689
- 101 Thoeny HC, De Keyzer F, King AD. Diffusion-weighted MR imaging in the head and neck. Radiology 2012; 263: 19-32
- 102 Hwang I, Choi SH, Kim YJ et al. Differentiation of recurrent tumor and posttreatment changes in head and neck squamous cell carcinoma: application of high b-value diffusion-weighted imaging. AJNR Am J Neuroradiol 2013; 34: 2343-2348
- 103 Zbären P, Christe A, Caversaccio MD et al. Pretherapeutic staging of recurrent laryngeal carcinoma: clinical findings and imaging studies compared with histopathology. Otolaryngol Head Neck Surg 2007; 137: 487-491
- 104 Richards PS, Peacock TE. The role of ultrasound in the detection of cervical lymph node metastases in clinically N0 squamous cell carcinoma of the head and neck. Cancer Imaging 2007; 7: 167-178
- 105 van den Brekel MW, Castelijns JA. What the clinician wants to know: surgical perspective and ultrasound for lymph node imaging of the neck. Cancer Imaging 2005; 5: S41-S49
- 106 Ong SC, Schöder H, Lee NY et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for locoregional advanced head and neck cancer. J Nucl Med 2008; 49: 532-540
- 107 Appenzeller P, Mader C, Huellner MW et al. PET/CT versus body coil PET/MRI: how low can you go?. Insights Imaging 2013; 4: 481-490
- 108 Park HH, Shin JY, Lee J et al. A study on the artifacts generated by dental materials in PET/CT image. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 2465-2468
- 109 Ruthotto L, Kugel H, Olesch J et al. Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images. Phys Med Biol 2012; 57: 5715-5731
- 110 Masterson K, Rager O, Kohler R et al. MR/PET image fusion: feasibility and utility in the loco-regional assessment of head and neck cancer. In: Proceedings of the 11th Annual Congress of the Swiss Society of Nuclear Medicine, Lugano, Switzerland, June 3–5, 2010. Nuklearmed Nucl Med 2010; 49: A127, SS415
- 111 Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008; 38: 167-176
- 112 Slomka PJ, Baum RP. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009; 36: S44-S55
- 113 Ouyang J, Li Q, El Fakhri G. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med 2013; 43: 60-67
- 114 Reducindo I, Arce-Santana E, Campos-Delgado DU et al. Non-rigid multimodal image registration based on local variability measures and optical flow. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 1133-1136
- 115 Leibfarth S, Mönnich D, Welz S et al. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning. Acta Oncol 2013; 52: 1353-1359
- 116 Yamamoto Y, Wong TZ, Turkington TG et al. Head and neck cancer: dedicated FDG PET/CT protocol for detection – phantom and initial clinical studies. Radiology 2007; 244: 263-272
- 117 Eloy JA, Brett EM, Fatterpekar GM et al. The significance and management of incidental 18F fluorodeoxyglucose-positron-emission tomography uptake in the thyroid gland in patients with cancer. AJNR Am J Neuroradiol 2009; 30: 1431-1434
- 118 Brindle R, Mullan D, Yap BK et al. Thyroid incidentalomas discovered on positron emission tomography CT scanning: malignancy rate and significance of standardised uptake values. Eur J Surg Oncol 2014; 40: 1528-1532
- 119 Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18F-FDG PET study: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 2014; 151: 190-200
- 120 Al-Hakami HA, Makis W, Anand S et al. Head and neck incidentalomas on positron emission tomographic scanning: ignore or investigate?. J Otolaryngol Head Neck Surg 2011; 40: 384-390
- 121 Osman MM, Altinyay ME, Abdelmalik AG et al. FDG PET/CT incidental diagnosis of a synchronous bladder cancer as a fourth malignancy in a patient with head and neck cancer. Clin Nucl Med 2011; 36: 496-497
- 122 Wong KK, Arabi M, Bou-Assaly W et al. Evaluation of incidentally discovered adrenal masses with PET and PET/CT. Eur J Radiol 2012; 81: 441-450
- 123 Dunne RM, O’Mahony D, Wilson G et al. The role of the breast radiologist in evaluation of breast incidentalomas detected on 18-fluorodeoxyglucose positron emission tomography/CT. Br J Radiol 2013; 86: 20130034