Neuroradiologie Scan 2016; 06(01): 45-57
DOI: 10.1055/s-0035-1569560
Fortbildung
Neurologische Kopf-Hals-Bildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Gliatumoren im Brodmann-Areal 6: Ausbreitungsmuster und Lagebeziehung zu motorischen Arealen[1]

Glial tumors in Brodmann area 6: spread pattern and relationships to motor areas
Komal B. Shah
,
L. Anne Hayman
,
Lakshmi S. Chavali
,
Jackson D. Hamilton
,
Sujit S. Prabhu
,
Pattana Wangaryattawanich
,
Vinodh A. Kumar
,
Ashok J. Kumar
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. Dezember 2015 (online)

Zusammenfassung

Im hinteren Frontallappen des Gehirns befinden sich das Brodmann-Areal 4, der primär-motorische Kortex und das Brodmann-Areal 6, das aus dem supplementär-motorischen Areal auf dem medialen Anteil der Hemisphäre und dem prämotorischen Kortex auf dem lateralen Anteil besteht. In diesem Bereich hängt die sichere Resektion von der genauen Lokalisierung des motorischen Kortex und des Sulcus centralis ab. Üblicherweise erfolgt dies mittels Dünnschichtbildgebung und wird durch andere Verfahren bestätigt. Die verlässlichsten anatomischen Landmarken sind das Repräsentationsareal der Hand (Hand Knob) und der R. marginalis des Sulcus cinguli. Postoperativ können motorische Ausfälle nicht nur aufgrund einer Verletzung des primär-motorischen Kortex auftreten, sondern auch durch eine Verletzung des SMA (supplementär-motorisches Areal) bedingt sein. Im Gegensatz zu Motorkortexverletzungen ist ein SMA-Syndrom transient, sofern es überhaupt dazu kommt. Auf der lateralen Hemisphäre können aufgrund von Verletzungen des prämotorischen Kortex ebenfalls Bewegungs- und Sprachdefizite verursacht werden, allerdings würde ein hochgradiges motorisches Defizit auf eine subkortikale Läsion der kortikospinalen Bahn hindeuten. Der enge Zusammenhang zwischen subkortikalen motorischen Fasern und dem prämotorischen Kortex wird im vorliegenden Beitrag veranschaulicht. Im Gegensatz zu den durchgehenden, nicht unterbrochenen Landmarken des Sulcus centralis und des R. marginalis, die für die präoperative Lokalisierung hilfreich sind, scheinen die variablen Unterbrechungen im Sulcus praecentralis und Sulcus cinguli des hinteren Frontallappens „kortikale Brücken“ für die Ausbreitung infiltrierender Gliome zu bieten.

Abstract

The posterior frontal lobe of the brain houses Brodmann area 4, which is the primary motor cortex, and Brodmann area 6, which consists of the supplementary motor area on the medial portion of the hemisphere and the premotor cortex on the lateral portion. In this area, safe resection is dependent on accurate localization of the motor cortex and the central sulcus, which can usually be achieved by using thin-section imaging and confirmed by using other techniques. The most reliable anatomic landmarks are the “hand knob” area and the marginal ramus of the cingulate sulcus. Postoperatively, motor deficits can occur not only because of injury to primary motor cortex but also because of injury to the supplementary motor area. Unlike motor cortex injury, the supplementary motor area syndrome is transient, if it occurs at all. On the lateral hemisphere, motor and language deficits can also occur because of premotor cortex injury, but a dense motor deficit would indicate subcortical injury to the corticospinal tract. The close relationship of the subcortical motor fibers and premotor cortex is illustrated. In contrast to the more constant landmarks of the central sulcus and marginal ramus, which aid in preoperative localization, the variable interruptions in the precentral and cingulate sulci of the posterior frontal lobe seem to provide “cortical bridges” for spread of infiltrating gliomas.

1 © 2015 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2015; 35: 793 – 803. Online published in 10.1148 /rg.2015140207. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Chang EF, Potts MB, Keles GE et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 2008; 108: 227-235
  • 2 Hardesty DA, Sanai N. The value of glioma extent of resection in the modern neurosurgical era. Front Neurol 2012; 3: 140
  • 3 Lacroix M, Abi-Said D, Fourney DR et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95: 190-198
  • 4 Ostrom QT, Gittleman H, Farah P et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 2013; 15: ii1-ii56
  • 5 Brodmann K. Brodmann’s localisation in the cerebral cortex. 3rd ed. New York, NY: Springer; 2006
  • 6 Russell SM, Kelly PJ. Incidence and clinical evolution of postoperative deficits after volumetric stereotactic resection of glial neoplasms involving the supplementary motor area. Neurosurgery 2007; 61: 358-367; discussion 367 – 368
  • 7 Fontaine D, Capelle L, Duffau H. Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery 2002; 50: 297-303; discussion 303 – 305
  • 8 Duffau H, Capelle L, Denvil D et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage 2003; 20: 1903-1914
  • 9 Halsband U, Ito N, Tanji J et al. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 1993; 116 : 243-266
  • 10 Halsband U, Lange RK. Motor learning in man: a review of functional and clinical studies. J Physiol Paris 2006; 99: 414-424
  • 11 Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 1996; 6: 342-353
  • 12 Duffau H. New insights into functional mapping in cerebral tumor surgery. Hauppauge, NY: Nova Science; 2009
  • 13 Laplane D, Talairach J, Meininger V et al. Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci 1977; 34 : 301-314
  • 14 Zentner J, Hufnagel A, Pechstein U et al. Functional results after resective procedures involving the supplementary motor area. J Neurosurg 1996; 85: 542-549
  • 15 Louis DN, Ohgaki H, Wiestler OD et al. eds. WHO classification of tumours of the central nervous system. 4th ed. Lyon, France: International Agency for Research on Cancer; 2007
  • 16 Dziurzynski K, Blas-Boria D, Suki D et al. Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes. J Neurooncol 2012; 109: 555-563
  • 17 Ono M, Kubik S, Abernathey CD. Atlas of the cerebral sulci. New York, NY: Thieme; 1990: 112-123
  • 18 Holodny AI, Watts R, Korneinko VN et al. Diffusion tensor tractography of the motor white matter tracts in man: current controversies and future directions. Ann N Y Acad Sci 2005; 1064: 88-97
  • 19 Bello L, Gambini A, Castellano A et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008; 39: 369-382
  • 20 Ono M, Kubik S, Abernathey CD. Atlas of the cerebral sulci. New York, NY: Thieme; 1990: 36-61
  • 21 Kido DK, LeMay M, Levinson AW et al. Computed tomographic localization of the precentral gyrus. Radiology 1980; 135: 373-377
  • 22 Naidich TP, Brightbill TC. The pars marginalis. I. A “bracket” sign for the central sulcus in axial plane CT and MRI. Int J Neuroradiol 1996; 2: 3-19
  • 23 Yousry TA, Schmid UD, Alkadhi H et al. Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 1997; 120 Pt. 1 141-157
  • 24 Caulo M, Briganti C, Mattei PA et al. New morphologic variants of the hand motor cortex as seen with MR imaging in a large study population. AJNR Am J Neuroradiol 2007; 28: 1480-1485
  • 25 Fesl G, Moriggl B, Schmid DU et al. Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 2003; 20: 601-610
  • 26 Mullick R, Bryan RN, Butman J. Confocal volume rendering: fast, segmentation free visualization of internal structures. In: Mun SK, ed. Proceedings of SPIE: medical imaging 2000 – image display and visualization. Vol. 3976 Bellingham, Wash: International Society for Optics and Photonics (SPIE); 2000: 70
  • 27 Hamilton JD, Kumar VA, Hayman LA et al. Deformable anatomic templates embed knowledge into brain images. II. Validation using functional magnetic resonance imaging of the motor hand. J Comput Assist Tomogr 2012; 36: 280-284
  • 28 Hayman LA, Kumar VA, Hamilton J et al. Deformable anatomic templates embed knowledge into patient’s brain images. I. Construction and display. J Comput Assist Tomogr 2012; 36: 354-359
  • 29 Kumar VA, Hamilton J, Hayman LA et al. Deformable anatomic templates improve analysis of gliomas with minimal mass effect in eloquent areas. Neurosurgery 2013; 73: 534-542