Der Nuklearmediziner 2015; 38(04): 259-274
DOI: 10.1055/s-0035-1564176
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

FDG-PET/CT: Spektrum physiologischer Normvarianten der Traceraufnahme

FDG PET/CT: Normal Variants of Physiologic Tracer Uptake
J. Grosse
1   Abteilung für Nuklearmedizin, Universitätsklinikum Regensburg, Regensburg
,
K. Menhart
1   Abteilung für Nuklearmedizin, Universitätsklinikum Regensburg, Regensburg
,
D. Hellwig
1   Abteilung für Nuklearmedizin, Universitätsklinikum Regensburg, Regensburg
› Author Affiliations
Further Information

Publication History

Publication Date:
15 December 2015 (online)

Zusammenfassung

Die Positronenemissionstomografie (PET) mit 18F-Fluorodesoxyglukose (FDG) in Kombination mit einer Computertomografie (CT) ist eine etablierte und nützliche Untersuchungsmethode bei der Diagnostik inflammatorischer/infektiöser Erkrankungen, bei der Beurteilung neurologischer und kardiologischer Pathologien und v. a. im Rahmen von Staging und Nachsorge zahlreicher maligner Neoplasien.

Nach intravenöser Applikation der FDG stellen sich durch Tracerakkumulation oder –exkretion Gehirn, Myokard, Gastrointestinaltrakt, Leber, Nieren und Harntrakt in der PET intensiv dar. In diesem Artikel wird die physiologische Aufnahme der 18F-Fluorodesoxyglukose in der positronenemissionstomografischen Ganzkörperuntersuchung beschrieben. Darüber hinaus werden in einer topografischen Gliederung zahlreiche physiologische Normvarianten aufgelistet und diskutiert. Eine akkurate Interpretation der PET-Bilder setzt eine umfassende Kenntnis dieser normalen physiologischen Distribution des radioaktiven Tracers und der häufig zu beobachtenden Normvarianten oder aktivierungs- bzw. medikamenteninduzierten FDG-Speicherungen voraus, die mit malignen Läsionen verwechselt werden können. Auf diese Weise können Fehlinterpretationen vermieden und die exzellenten diagnostischen Möglichkeiten der FDG-PET/CT voll ausgeschöpft werden.

Abstract

Positron emission tomography with the glucose analogue 18F-fluordeoxyglucose in combination with computed tomography is an established and useful method in the diagnosis of inflammatory/infectious diseases, in the assessment of neurological and cardiac pathologies and especially in the context of staging and follow-up of many malignant neoplasias.

After intravenous administration, high FDG activity can be detected in brain, myocardium, gut, liver, kidneys and urinary tract due to tracer accumulation or excretion. An accurate interpretation of PET images requires a comprehensive knowledge of the normal physiological distribution of FDG and its frequently encountered normal variations, which may be confused with malignant lesions. Thus, misinterpretations of PET/CT findings can be avoided.

The objective of this article is to describe the physiological uptake of FDG in a whole-body FDG/PET-scan. Moreover, numerous normal variants are listed and discussed in a topographical arrangement.

 
  • Literatur

  • 1 Abouzied MM, Crawford ES, Nabi HA. 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 2005; 33: 145-155
  • 2 Ahmad Sarji S. Physiological uptake in FDG PET simulating disease. Biomed Imaging Interv J 2006; 2: e59
  • 3 Ak I, Stokkel MP, Pauwels EK. Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose in oncology. Part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol 2000; 126: 560-574
  • 4 Alavi A, Gupta N, Alberini JL et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 2002; 32: 293-321
  • 5 Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 1996; 37: 1127-1129
  • 6 Basu S, Kwee TC, Surti S et al. Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 2011; 1228: 1-18
  • 7 Berti V, Mosconi L, Pupi A. Brain normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin 2014; 9: 129-140
  • 8 Brink I, Reinhardt MJ, Hoegerle S et al. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 2001; 42: 591-595
  • 9 Burrell SC, Van den Abbeele AD. 2-Deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography of the head and neck: an atlas of normal uptake and variants. Mol Imaging Biol 2005; 7: 244-256
  • 10 Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med 1996; 26: 308-314
  • 11 Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med 2004; 34: 122-133
  • 12 Engel H, Steinert H, Buck A et al. Whole-body PET: physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996; 37: 441-446
  • 13 Fan CM, Fischman AJ, Kwek BH et al. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. AJR Am J Roentgenol 2005; 184: 339-342
  • 14 Fujii H, Ide M, Yasuda S et al. Increased FDG uptake in the wall of the right atrium in people who participated in a cancer screening program with whole-body PET. Ann Nucl Med 1999; 13: 55-59
  • 15 Gelfand MJ, O'hara SM, Curtwright LA et al. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 2005; 35: 984-990
  • 16 Gontier E, Fourme E, Wartski M et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging 2008; 35: 95-99
  • 17 Goodin GS, Shulkin BL, Kaufman RA et al. PET/CT characterization of fibroosseous defects in children: 18F-FDG uptake can mimic metastatic disease. AJR Am J Roentgenol 2006; 187: 1124-1128
  • 18 Gordon BA, Flanagan FL, Dehdashti F. Whole-body positron emission tomography: normal variations, pitfalls, and technical considerations. AJR Am J Roentgenol 1997; 169: 1675-1680
  • 19 Gorospe L, Raman S, Echeveste J et al. Whole-body PET/CT: spectrum of physiological variants, artifacts and interpretative pitfalls in cancer patients. Nucl Med Commun 2005; 26: 671-687
  • 20 Greenspan RL, Suprenant V, Atem F. Visualization of distal spinal cord on F-18 FDG PET/CT. Clin Nucl Med 2012; 37: 137-141
  • 21 Hicks RJ, Binns D, Stabin MG. Pattern of uptake and excretion of (18)F-FDG in the lactating breast. J Nucl Med 2001; 42: 1238-1242
  • 22 Hillner BE, Siegel BA, Shields AF et al. The impact of positron emission tomography (PET) on expected management during cancer treatment: findings of the National Oncologic PET Registry. Cancer 2009; 115: 410-418
  • 23 Hustinx R, Bénard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med 2002; 32: 35-46
  • 24 Ivançević V, Alavi A, Souder E et al. Regional cerebral glucose metabolism in healthy volunteers determined by fluordeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med 2000; 25: 596-602
  • 25 Jackson RS, Schlarman TC, Hubble WL et al. Prevalence and patterns of physiologic muscle uptake detected with whole-body 18F-FDG PET. J Nucl Med Technol 2006; 34: 29-33
  • 26 Jadvar H, Connolly LP, Fahey FH et al. PET and PET/CT in pediatric oncology. Semin Nucl Med 2007; 37: 316-331
  • 27 Kawashita NH, Brito MN, Brito SR et al. Glucose uptake, glucose transporter GLUT4, and glycolytic enzymes in brown adipose tissue from rats adapted to a high-protein diet. Metabolism 2002; 51: 1501-1505
  • 28 Kazama T, Swanston N, Podoloff DA et al. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 2005; 32: 1406-1411
  • 29 Kitajima K, Nakamoto Y, Senda M et al. Normal uptake of 18F-FDG in the testis: an assessment by PET/CT. Ann Nucl Med 2007; 21: 405-410
  • 30 Kochunov P, Ramage AE, Lancaster JL et al. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. Neuroimage 2009; 45: 17-28
  • 31 Kotzerke J, Oehme L, Grosse J et al. Positron emission tomography 2013 in Germany. Results of the query and current status. Nuklearmedizin 2015; 54: 53-59
  • 32 Kubota R, Yamada S, Kubota K et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33: 1972-1980
  • 33 Lerman H, Metser U, Grisaru D et al. Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med 2004; 45: 266-271
  • 34 Lin CY, Ding HJ, Liu CS et al. Correlation between the intensity of breast FDG uptake and menstrual cycle. Acad Radiol 2007; 14: 940-944
  • 35 Love C, Tomas MB, Tronco GG et al. PET of infection and inflammation. Radiographics 2005; 25: 1357-1368
  • 36 Maurer AH, Burshteyn M, Adler LP et al. How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics 2011; 31: 1287-1305
  • 37 Nakamoto Y, Tatsumi M, Hammoud D et al. Normal FDG distribution patterns in the head and neck: PET/CT evaluation. Radiology 2005; 234: 879-885
  • 38 Parysow O, Mollerach AM, Jager V et al. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 2007; 32: 351-357
  • 39 Pauwels EK, Ribeiro MJ, Stoot JH et al. FDG accumulation and tumor biology. Nucl Med Biol 1998; 25: 317-322
  • 40 Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 2009; 29: 1467-1486
  • 41 Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19: 61-77
  • 42 Sokoloff L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1981; 1: 7-36
  • 43 Subhas N, Patel PV, Pannu HK et al. Imaging of pelvic malignancies with in-line FDG PET-CT: case examples and common pitfalls of FDG PET. Radiographics 2005; 25: 1031-1043
  • 44 Sugawara Y, Fisher SJ, Zasadny KR et al. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998; 16: 173-180
  • 45 Tatlidil R, Jadvar H, Bading JR et al. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 2002; 224: 783-787
  • 46 Truong MT, Erasmus JJ, Munden RF et al. Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR Am J Roentgenol 2004; 183: 1127-1132
  • 47 Vesselle HJ, Miraldi FD. FDG PET of the retroperitoneum: normal anatomy, variants, pathologic conditions, and strategies to avoid diagnostic pitfalls. Radiographics 1998; 18: 805-823
  • 48 Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002; 32: 47-59
  • 49 Zukotynski KA, Israel DA, Kim CK. FDG uptake in lipomatous hypertrophy of the interatrial septum is not likely related to brown adipose tissue. Clin Nucl Med 2011; 36: 767-769