Aktuelle Rheumatologie 2016; 41(01): 40-51
DOI: 10.1055/s-0035-1564142
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Differenzialdiagnostik metabolischer Myopathien

Differential Diagnosis of Metabolic Myopathies
K. Irlbacher
1   Klinik für Neurologie, Charité-Universitätsmedizin Berlin, Berlin
,
W. Stenzel
2   Institut für Neuropathologie, Charité-Universitätsmedizin Berlin, Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
16. Februar 2016 (online)

Zusammenfassung

Typische Kennzeichen von metabolischen Myopathien sind belastungsinduzierte Muskelschmerzen, Muskelverkrampfungen, Belastungsintoleranz, Muskelschwäche und Rhabdomyolyse bzw. Myoglobinurie. In einigen Fällen liegt auch eine proximal betonte Myopathie mit manifesten Paresen vor. Andere Organmanifestationen, wie Kardiomyopathie, Neuropathie oder ZNS-Beteiligung können vorhanden und differenzialdiagnostisch hilfreich sein. Die Erkrankungen können den Purin-, Glucose- und Glycogen- sowie den Lipidstoffwechsel und die mitochondriale Atmungskette betreffen. Ziel dieses Artikels ist es, die Abgrenzung der einzelnen metabolischen Myopathien untereinander und zu anderen hereditären und den entzündlichen Muskelerkrankungen zu erleichtern.

Abstract

Typical symptoms of metabolic myopathies are exertion-induced muscle pain, muscle cramps, exercise intolerance, muscle weakness and rhabdomyolysis or myoglobinuria. In some diseases, myopathy is associated with permanent proximal muscle weakness. Cardiomyopathy, neuropathy or CNS manifestation may be present and point to the underlying disease. The diseases can affect purine metabolism, glucose and glycogen metabolism, lipid metabolism and the mitochondrial respiratory chain. The aim of this manuscript is to facilitate the distinction between the individual metabolic myopathies as well as between metabolic myopathies and other inherited or inflammatory muscle diseases.

 
  • Literatur

  • 1 Finsterer J, Milvay E. Stress lactate in mitochondrial myopathy under constant, unadjusted workload. Eur J Neurol 2004; 11: 811-816
  • 2 Livingstone C, Chinnery PF, Turnbull DM et al. The lschaemic Lactate Ammonia Test. Annals of Clinical Biochemistry 2001; 38: 304-310
  • 3 Kost GJ, Verity MA. A new variant of late-onset myophosphorylase deficiency. Muscle Nerve 1980; 3: 195-201
  • 4 Carlier RY, Laforet P, Wary C et al. Whole body muscle MRI in 20 patients suffering from late onset Pompe disease: involvement patterns. Neuromuscul disord 2011; 21: 791-799
  • 5 Reilich P, Horvath R, Krause S et al. The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. J Neurol 2011; 258: 1987-1997
  • 6 Hanisch F, Joshi P, Zierz S et al. AMP deaminase deficiency in skeletal muscle is unlikely to be of clinical relevance. J Neurol 2008; 255: 318-322
  • 7 Ausems MG, ten Berg K, Kroos MA et al. Glycogen storage disease type II: birth prevalence agrees with predicted genotype frequency. Community Genet 1999; 2: 91-96
  • 8 Hirschhorn R, Reuser AJJ. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Childs B, et al. (ed) The Metabolic and Molecular Bases of Inherited Disease. 8th edn. McGraw-Hill; New York: 2000: 3389-3420
  • 9 Schüller A, Kornblum C, Deschauer M et al. Diagnose und Therapie des Late-onset-Morbus-Pompe. Nervenarzt 2013; 84: 1467-1472
  • 10 Bandyopadhyay S, Wicklund M, Specht CS et al. Novel Presentation of Pompe Disease: Inclusion Body Myositislike Clinical Phenotype. Muscle Nerve, Accepted Article DOI: 10.1002/mus.24674
  • 11 Gesquière-Dando A, Attarian S, Maues de Paula A et al. Fibromyalgia-like symptoms associated with irritable bowel syndrome: a challenging diagnosis of late-onset Pompe disease. Muscle Nerve, Accepted Article DOI: 10.1002/mus.24618
  • 12 Raben N, Takikita S, Pittis MG et al. Deconstructing Pompe disease by analyzing single muscle fibers: to see a world in a grain of sand. Autophagy 2007; 3: 546-552
  • 13 Nascimbeni AC, Fanin M, Masiero E et al. Impaired autophagy contributes to muscle atrophy in glycogen storage disease type II patients. Autophagy 2012; 8: 1697-1700
  • 14 Pellegrini N, Laforet P, Orlikowski D et al. Respiratory insufficiency and limb muscle weakness in adults with Pompe’s disease. Eur Respir J 2005; 26: 1024-1031
  • 15 Bembi B, Cerini E, Danesino C et al. Diagnosis of glycogenosis type II. Neurology 2008; 71 (Suppl. 02) S4-S11
  • 16 Tsuburaya RS, Monma K, Oya Y et al. Acid phosphatase-positive globular inclusions is a good diagnostic marker for two patients with adult-onset Pompe disease lacking disease specific pathology. Neuromuscul Disord 2012; 22: 389-393
  • 17 Kishnani PS, Nicolino M, Voit T et al. Chinese hamster ovary cell-derived recombinant human acid a-glucosidase in infantile-onset Pompe disease. J Pediatr 2006; 149: 89-97
  • 18 van der Ploeg AT. Where do we stand in enzyme replacement therapy in Pompe’s disease?. Neuromuscul Disord 2010; 20: 773-774
  • 19 van der Ploeg AT, Clemens PR, Corzo D et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med 2010; 362: 1396-1406
  • 20 Angelini C, Semplicini C, Ravaglia S et al. Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol 2012; 259: 952-958
  • 21 Regnery C, Kornblum C, Hanisch F et al. 36 months observational clinical study of 38 adult Pompe disease patients under alglucosidase alfa enzyme replacement therapy. J Inherit Metab Dis 2012; 35: 837-845
  • 22 Parenti G, Andria G. Pompe disease: from new views on pathophysiology to innovative therapeutic strategies. Curr Pharm Biotechnol 2011; 12: 902-915
  • 23 Quinlivan R, Buckley J, James M et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry 2010; 81: 1182-1188
  • 24 Musumeci O, Bruno C, Mongini T et al. Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD VII). Neuromusc Dis 2012; 22: 325-330
  • 25 Gempel K, Bauer MF, Gerbitz K-D et al. Dt Ärztebl. 1999; 96: A-3035-A-3042 [Heft 47]
  • 26 Roe CR, Coates PM. Mitochondrial fatty acid oxidation disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D. eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 1995: 1501-1533
  • 27 Ohkuma A, Noguchi S, Sugie H et al. Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 2009; 39: 333-342
  • 28 de Sain-van der Velden MG, Diekman EF, Jans JJ et al. Differences between acylcarnitine profiles in plasma and bloodspots. Mol Genet Metab 2013; 110: 116-121
  • 29 Ørngreen MC, Olsen DB, Vissing J et al. Exercise tolerance in carnitinepalmitoyltransferase II deficiency with IV and oral glucose. Neurology 2002; 59: 1046-1051
  • 30 Engel AG, Angelini C . Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179: 899-902
  • 31 Karpati G, Carpenter S, Engel AG et al. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology 1975; 25: 16-24
  • 32 Angelini C. Spectrum of metabolic myopathies. Biochimica et Biophysica Acta 1852 2015; 615-621
  • 33 Frerman FE, Goodman SI. Nuclear-encoded defects of the mitochondrial respiratory chain, including glutaric academia type II. In: Scriver CR, Beaudet AL, Sly WS, Valle D. eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 1995: 1611-1629
  • 34 Liang WC, Nishino I. Lipid storage myopathy. Curr Neurol Neurosci Rep 2011; 11: 97-103
  • 35 Gempel K, Topaloglu H, Talim B et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007; 130: 2037-2044
  • 36 Cornelius N, Frerman FE, Corydon TJ et al. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency. Hum Mol Genet 2012; 21: 3435-3448
  • 37 Di Mauro S. Mitochondrial myopathies. Curr Opin Rheumatol 2006; 18: 636-641
  • 38 Lammens M, Schoser B. Metabolische Myopathien – ein Überblick. Pathologe 2009; 30: 370-378
  • 39 Wong LJ. Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 2007; 36: 279-293
  • 40 Alberio S, Mineri R, Tiranti V et al. Depletion of mtDNA: Syndromes and genes. Mitochondrion 2007; 7: 6-12
  • 41 Luft R, Ikkos D, Parmieri G et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 1962; 41: 1776-1804
  • 42 Smeitink J, Stadhouders A, Sengers R et al. Mitochondrial creatine kinase containing crystals, creatine content and mitochondrial creatine kinase activity in chronic progressive external ophthalmoplegia. Neuromuscul Disord 1992; 2: 35-40
  • 43 Keightley JA, Hoffbuhr KC, Burton MD et al. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 1996; 12: 410-416
  • 44 Ronchi D, Garone C, Bordoni A et al. Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions. Brain 2012; 135: 3404-3415