Semin Musculoskelet Radiol 2015; 19(04): 375-386
DOI: 10.1055/s-0035-1563733
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Qualitative and Quantitative Ultrashort Echo Time Imaging of Musculoskeletal Tissues

Eric Y. Chang
1   Department of Radiology, VA San Diego Healthcare System, San Diego, California
2   Department of Radiology, University of California, San Diego Medical Center, San Diego, California
,
Jiang Du
2   Department of Radiology, University of California, San Diego Medical Center, San Diego, California
,
Won C. Bae
2   Department of Radiology, University of California, San Diego Medical Center, San Diego, California
,
Christine B. Chung
1   Department of Radiology, VA San Diego Healthcare System, San Diego, California
2   Department of Radiology, University of California, San Diego Medical Center, San Diego, California
› Author Affiliations
Further Information

Publication History

Publication Date:
19 November 2015 (online)

Abstract

Ultrashort echo time (UTE) sequences represent a group of clinically compatible techniques that are capable of using echo times < 1 ms. With these techniques, direct imaging of short T2/T2* tissues or tissue components can now be performed. Continuing modifications to the UTE techniques have allowed for faster and more robust sequences now comparable with conventional clinical sequences. UTE also allows for morphological imaging and quantitative evaluation in a manner not previously possible with conventional imaging sequences utilizing much longer echo times. Numerous potential clinical applications have emerged that are discussed in this review article.

 
  • References

  • 1 Bydder GM. Review. The Agfa Mayneord lecture: MRI of short and ultrashort T2 and T2 components of tissues, fluids and materials using clinical systems. Br J Radiol 2011; 84 (1008) 1067-1082
  • 2 Geva T. Magnetic resonance imaging: historical perspective. J Cardiovasc Magn Reson 2006; 8 (4) 573-580
  • 3 Smith FW. Clinical application of NMR tomographic imaging. In: Witcofski RL, Karstaedt N, Partain CL, , eds. NMR imaging. Winston Salem, NC: Bowman Gray School of Medicine; 1982: 125-132
  • 4 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41 (4) 870-883
  • 5 Pauly JM, Conolly SI, Nishimura D , et al. Slice-selective excitation for very short T2 species. Paper presented at: ISMRM 8th Scientific Meeting and Exhibition; 1989; Amsterdam, Netherlands
  • 6 Rahmer J, Börnert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 2006; 55 (5) 1075-1082
  • 7 Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003; 27 (6) 825-846
  • 8 Du J, Bydder M, Takahashi AM, Chung CB. Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging 2008; 26 (3) 304-312
  • 9 Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med 2006; 55 (3) 575-582
  • 10 Qian Y, Boada FE. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med 2008; 60 (1) 135-145
  • 11 Song HK, Wehrli FW. Variable TE gradient and spin echo sequences for in vivo MR microscopy of short T2 species. Magn Reson Med 1998; 39 (2) 251-258
  • 12 Weiger M, Pruessmann KP. MRI with zero echo time. In: eMagRes. John Wiley & Sons; 2012. . Abstract available at: http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1292/abstract . Accessed September 2, 2015
  • 13 Wiesinger F, Sacolick LI, Menini A , et al. Zero TE MR bone imaging in the head. Magn Reson Med 2015; ; January 16 (Epub ahead of print)
  • 14 Garwood M, Idiyatullin D, Corum CA , et al. Capturing signals from fast-relaxing spins with frequency-swept MRI: SWIFT. In: eMagRes. John Wiley & Sons; 2012. . Abstract available at: http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1259/abstract . Accessed September 2, 2015
  • 15 Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 2012; 67 (2) 510-518
  • 16 Lee YH, Kim S, Song HT, Kim I, Suh JS. Weighted subtraction in 3D ultrashort echo time (UTE) imaging for visualization of short T2 tissues of the knee. Acta Radiol 2014; 55 (4) 454-461
  • 17 Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI. Magn Reson Med 2003; 50 (1) 59-68
  • 18 Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed 2013; 26 (5) 489-506
  • 19 Du J, Takahashi AM, Bydder M, Chung CB, Bydder GM. Ultrashort TE imaging with off-resonance saturation contrast (UTE-OSC). Magn Reson Med 2009; 62 (2) 527-531
  • 20 Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed 2001; 14 (2) 57-64
  • 21 Maryanski MJ, Gore JC, Kennan RP, Schulz RJ. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 1993; 11 (2) 253-258
  • 22 Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143 (1) 79-87
  • 23 Horch RA, Gochberg DF, Nyman JS, Does MD. Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med 2012; 68 (6) 1774-1784
  • 24 Reichert IL, Robson MD, Gatehouse PD , et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 2005; 23 (5) 611-618
  • 25 Du J, Carl M, Bae WC , et al. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthritis Cartilage 2013; 21 (1) 77-85
  • 26 Du J, Takahashi AM, Bae WC, Chung CB, Bydder GM. Dual inversion recovery, ultrashort echo time (DIR UTE) imaging: creating high contrast for short-T(2) species. Magn Reson Med 2010; 63 (2) 447-455
  • 27 Carl M, Chiang J-TA. Investigations of the origin of phase differences seen with ultrashort TE imaging of short T2 meniscal tissue. Magn Reson Med 2012; 67 (4) 991-1003
  • 28 Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52 (3) 612-618
  • 29 Gore JC, Anderson AW. The physics of relaxation. In: eMagRes. John Wiley & Sons; 2013. . Abstract available at: http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1282/abstract . Accessed September 2, 2015
  • 30 Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction MR imaging. Radiology 1991; 179 (3) 777-781
  • 31 Du J, Diaz E, Carl M, Bae W, Chung CB, Bydder GM. Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med 2012; 67 (3) 645-649
  • 32 Xia Y. MRI of articular cartilage at microscopic resolution. Bone Joint Res 2013; 2 (1) 9-17
  • 33 Chang EY, Du J, Iwasaki K , et al. Single- and Bi-component T2* analysis of tendon before and during tensile loading, using UTE sequences. J Magn Reson Imaging 2015; 42 (1) 114-120
  • 34 Fullerton GD, Cameron IL, Ord VA. Orientation of tendons in the magnetic field and its effect on T2 relaxation times. Radiology 1985; 155 (2) 433-435
  • 35 Wang N, Xia Y. Anisotropic analysis of multi-component T2 and T1rho relaxations in achilles tendon by NMR spectroscopy and microscopic MRI. J Magn Reson Imaging 2013; 38 (3) 625-633
  • 36 Pauli C, Bae WC, Lee M , et al. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. Radiology 2012; 264 (2) 484-493
  • 37 Du J, Carl M, Diaz E , et al. Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles tendon and meniscus. Magn Reson Med 2010; 64 (3) 834-842
  • 38 Du J, Statum S, Znamirowski R, Bydder GM, Chung CB. Ultrashort TE T1ρ magic angle imaging. Magn Reson Med 2013; 69 (3) 682-687
  • 39 Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson 2010; 207 (2) 304-311
  • 40 Springer F, Steidle G, Martirosian P, Syha R, Claussen CD, Schick F. Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method. Invest Radiol 2011; 46 (10) 610-617
  • 41 Springer F, Martirosian P, Machann J, Schwenzer NF, Claussen CD, Schick F. Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 Tesla. Magn Reson Med 2009; 61 (5) 1040-1048
  • 42 Syha R, Martirosian P, Ketelsen D , et al. Magnetization transfer in human Achilles tendon assessed by a 3D ultrashort echo time sequence: quantitative examinations in healthy volunteers at 3T. Rofo 2011; 183 (11) 1043-1050
  • 43 Grosse U, Syha R, Martirosian P , et al. Ultrashort echo time MR imaging with off-resonance saturation for characterization of pathologically altered Achilles tendons at 3 T. Magn Reson Med 2013; 70 (1) 184-192
  • 44 Hodgson RJ, Grainger AJ, O'Connor PJ , et al. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast. Eur Radiol 2011; 21 (6) 1144-1152
  • 45 Chang EY, Du J, Biswas R , et al. Off-resonance saturation ratio obtained with ultrashort echo time-magnetization transfer techniques is sensitive to changes in static tensile loading of tendons and degeneration. J Magn Reson Imaging 2015; ; March 23 (Epub ahead of print)
  • 46 Stanisz GJ, Odrobina EE, Pun J , et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005; 54 (3) 507-512
  • 47 [No authors listed]. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7–29, 2000: highlights of the conference. South Med J 2001; 94 (6) 569-573
  • 48 Zebaze RMD, Ghasem-Zadeh A, Bohte A , et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 2010; 375 (9727) 1729-1736
  • 49 Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312 (7041) 1254-1259
  • 50 Schuit SCE, van der Klift M, Weel AE , et al. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004; 34 (1) 195-202
  • 51 McCreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk?. J Bone Miner Res 2000; 15 (12) 2305-2308
  • 52 Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 2002; 30 (5) 759-764
  • 53 Cowin SC. Bone poroelasticity. J Biomech 1999; 32 (3) 217-238
  • 54 Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006; 19 (7) 731-764
  • 55 Ritchie RO, Buehler MJ, Hansma P. Plasticity and toughness in bone. Physics Today 2009; 62: 41-47 . Available at: http://web.mit.edu/mbuehler/www/research/PTO000041.pdf
  • 56 Wang X, Ni Q. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J Orthop Res 2003; 21 (2) 312-319
  • 57 Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 2008; 42 (1) 193-199
  • 58 Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med 2010; 64 (3) 680-687
  • 59 Diaz E, Chung CB, Bae WC , et al. Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water. NMR Biomed 2012; 25 (1) 161-168
  • 60 Biswas R, Bae W, Diaz E , et al. Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 2012; 50 (3) 749-755
  • 61 Horch RA, Gochberg DF, Nyman JS, Does MD. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray. PLoS ONE 2011; 6 (1) e16359
  • 62 Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 2012; 27 (4) 848-857
  • 63 Fernández-Seara MA, Wehrli SL, Takahashi M, Wehrli FW. Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties. J Bone Miner Res 2004; 19 (2) 289-296
  • 64 Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 2008; 248 (3) 824-833
  • 65 Bashoor-Zadeh M, Li C, Sun W , et al. Simple ultrashort echo time MRI measure associated with cortical bone porosity. Paper presented at: ISMRM 21th Scientific Meeting & Exhibition; 2013; Salt Lake City, UT
  • 66 Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology 2015; 276 (2) 526-535
  • 67 Li C, Seifert AC, Rad HS , et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 2014; 272 (3) 796-806
  • 68 Maroudas A. Physico-chemical properties of articular cartilage. In: Freeman MAR, , ed. Adult Articular Cartilage. 2nd ed. Tunbridge Wells, UK: Pitman Medical; 1979: 215-290
  • 69 Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1 (6) 461-468
  • 70 Johnson D, Pedowitz RA. Practical Orthopaedic Sports Medicine and Arthroscopy. Philadelphia, PA: Lippincott Williams & Wilkins; 2007
  • 71 Rogers BA, Murphy CL, Cannon SR, Briggs TW. Topographical variation in glycosaminoglycan content in human articular cartilage. J Bone Joint Surg Br 2006; 88 (12) 1670-1674
  • 72 Rogers B, Murphy C, Cannon S , et al. P100 topographical glycosaminoglycan variation in human articular cartilage. J Bone Joint Surg Br 2008; 90-B (II) 391
  • 73 Yoshida K, Azuma H. Contents and compositions of glycosaminoglycans in different sites of the human hip joint cartilage. Ann Rheum Dis 1982; 41 (5) 512-519
  • 74 Hunziker EB, Michel M, Studer D. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc Res Tech 1997; 37 (4) 271-284
  • 75 Fujioka R, Aoyama T, Takakuwa T. The layered structure of the articular surface. Osteoarthritis Cartilage 2013; 21 (8) 1092-1098
  • 76 Aspden RM, Hukins DW. Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function. Proc R Soc Lond B Biol Sci 1981; 212 (1188) 299-304
  • 77 Muir H. Proteoglycans of cartilage. J Clin Pathol Suppl (R Coll Pathol) 1978; 12: 67-81
  • 78 Schmid TM, Linsenmayer TF. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 1985; 100 (2) 598-605
  • 79 Lane LB, Bullough PG. Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J Bone Joint Surg Br 1980; 62 (3) 372-375
  • 80 Lattanzio PJ, Marshall KW, Damyanovich AZ, Peemoeller H. Macromolecule and water magnetization exchange modeling in articular cartilage. Magn Reson Med 2000; 44 (6) 840-851
  • 81 Boyde A, Riggs CM, Bushby AJ, McDermott B, Pinchbeck GL, Clegg PD. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone. Eur Cell Mater 2011; 21: 470-478 ; discussion 478
  • 82 Bae WC, Dwek JR, Znamirowski R , et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology 2010; 254 (3) 837-845
  • 83 Williams A, Qian Y, Bear D, Chu CR. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage 2010; 18 (4) 539-546
  • 84 Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis 2006; 65 (10) 1261-1264
  • 85 Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 1980; 51 (6) 871-879
  • 86 Berthiaume MJ, Raynauld JP, Martel-Pelletier J , et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 2005; 64 (4) 556-563
  • 87 Sharma L, Eckstein F, Song J , et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 2008; 58 (6) 1716-1726
  • 88 Blain E, Duance V. Meniscus. In: Hutson MA, Speed C, , eds. Sports Injuries. Oxford, UK, and New York, NY: Oxford University Press; 2011: 45-53
  • 89 Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl) 1998; 197 (4) 317-324
  • 90 Kambic HE, McDevitt CA. Spatial organization of types I and II collagen in the canine meniscus. J Orthop Res 2005; 23 (1) 142-149
  • 91 Skaggs DL, Warden WH, Mow VC. Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 1994; 12 (2) 176-185
  • 92 Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med 1982; 10 (2) 90-95
  • 93 Nakano T, Dodd CM, Scott PG. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J Orthop Res 1997; 15 (2) 213-220
  • 94 Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2010; 21 (5) 275-289
  • 95 Gatehouse PD, He T, Puri BK, Thomas RD, Resnick D, Bydder GM. Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones. Br J Radiol 2004; 77 (920) 641-647
  • 96 Omoumi P, Bae WC, Du J , et al. Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques—feasibility study. Radiology 2012; 264 (1) 260-268
  • 97 Williams A, Qian Y, Golla S, Chu CR. UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthritis Cartilage 2012; 20 (6) 486-494
  • 98 Andersson GB. Epidemiological features of chronic low-back pain. Lancet 1999; 354 (9178) 581-585
  • 99 An HS, Anderson PA, Haughton VM , et al. Introduction: disc degeneration: summary. Spine 2004; 29 (23) 2677-2678
  • 100 Bogduk N, Endres SM. Clinical Anatomy of the Lumbar Spine and Sacrum. 4th ed. New York, NY: Elsevier/Churchill Livingstone; 2005
  • 101 Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 1990; 15 (5) 402-410
  • 102 Cassidy JJ, Hiltner A, Baer E. Hierarchical structure of the intervertebral disc. Connect Tissue Res 1989; 23 (1) 75-88
  • 103 Setton LA, Zhu W, Weidenbaum M, Ratcliffe A, Mow VC. Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J Orthop Res 1993; 11 (2) 228-239
  • 104 Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989; 14 (2) 166-174
  • 105 Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26 (17) 1873-1878