Subscribe to RSS
DOI: 10.1055/s-0035-1562736
Zirconium-Catalyzed Reactions of 1-Alkynyl Phosphine Oxides and Sulfides with Et3Al
Publication History
Received: 31 March 2016
Accepted after revision: 22 July 2016
Publication Date:
04 August 2016 (online)
Abstract
The interaction of 1-alkynyl phosphine oxides, sulfides, and selenides with Me3Al and Et3Al under zirconocene catalysis was studied. It has been found that the pathway of the reaction of 1-alkynyl phosphine derivatives with Et3Al strongly depends on the nature of the substrate and the solvent. The ethylalumination takes place in the case of 1-alkynyl phosphine oxides in hexane solvent. The reaction of 1-hexynyl phosphine oxide with Et3Al failed when dichloromethane was used as a solvent. Zirconium-catalyzed reaction of 1-heptynyl phosphine sulfide with Et3Al proceeds as the cycloalumination followed by the desulfurization under the action of low-valent zirconium complexes. 1-Heptynyl phosphine selenide was subjected to full deselenation under the reaction conditions.
Key words
alkynes - aluminum - coupling - homogeneous catalysis - metallacycles - metallocenes - phosphorus - transition metalsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562736.
- Supporting Information
-
References and Notes
- 1 Xi Z, Zhang W, Takahashi T. Tetrahedron Lett. 2004; 45: 2427
- 2 Xi Z, Zhang W.-X, Song Z, Zheng W, Kong F, Takahashi T. J. Org. Chem. 2005; 70: 8785
- 3 Kolla L. Chem. Rev. 2010; 4257
- 4 Stephan DW. Org. Biomol. Chem. 2008; 6: 1535
- 5 Roters S, Appelt C, Westenberg H, Hepp A, Slootweg JC, Lammertsma K, Uhl W. Dalton Trans. 2012; 41: 9033
- 6 Uhl W, Appelt C, Backs J, Westenberg H, Wollschläger A, Tannert J. Organometallics 2014; 33: 1212
- 7 Zhang Y, Miyake GM, Chen EY.-X. X. Angew. Chem. 2010; 49: 10158
- 8 Baumgartner T. Acc. Chem. Res. 2014; 47: 1613
- 9 Chen H, Pascal S, Wang Z, Bouit P.-A, Wang Z, Zhang Y, Tondelier D, Geffroy B, Réau R, Mathey F, Duan Z, Hissler M. Chem. Eur. J. 2014; 20: 9784
- 10 Xi Z, Zhang W, Takahashi T. Tetrahedron Lett. 2004; 45: 2427
- 11 Ben-Valid S, Quntar AA. A, Srebnik M. J. Org. Chem. 2005; 70: 3554
- 12 Quntar AA. A, Srebnik M. Org. Lett. 2001; 3: 1379
- 13 Miller AD, Johnson SA, Tupper KA, McBee JL, Tilley TD. Organometallics 2009; 28: 1252
- 14 El Harouch Y, Cadierno V, Igau A, Donnadieu B, Majoral J.-P. J. Organomet. Chem. 2004; 689: 953
- 15 Miquel Y, Igau A, Donnadieu B, Majoral J.-P, Dupuis L, Pirio N, Meunier P. Chem. Commun. 1997; 279
- 16 Dupuis L, Pirio N, Meunier P, Igau A, Donnadieu B, Majoral J.-P. Angew. Chem., Int. Ed. Engl. 1997; 36: 987
- 17 Quntar AA. A, Srebnik M. J. Org. Chem. 2001; 66: 6650
- 18 Quntar AA. A, Melman A, Srebnik M. Synlett 2002; 61
- 19 Quntar AA. A, Melman A, Srebnik M. J. Org. Chem. 2002; 67: 3769
- 20a Pirio N, Bredeau S, Dupuis L, Schütz P, Donnadieu B, Igau A, Majoral J.-P, Guillemin J.-C, Meuner P. Tetrahedron 2004; 60: 1317
- 20b Zhang S, Zhang W.-X, Zhao J, Xi Z. J. Am. Chem. Soc. 2010; 132: 14042
- 21 Van Horn DE, Negishi E.-i. J. Am. Chem. Soc. 1978; 100: 2252
- 22 Negishi E, Van Horn DE, Yoshida T. J. Am. Chem. Soc. 1985; 107: 6639
- 23 To Cp2ZrCl2 (0.117 g, 0.4 mmol) suspended in hexane (5 mL) was added under an atmosphere of argon hex-1-yn-1-yldiphenylphosphine oxide (0.56 g, 2 mmol) and Et3Al (0.9 mL, 6 mmol) at 40 °C. After heating for 6 h, the reaction mixture was diluted with hexane (5 mL) and D2O (3 mL) was added dropwise while cooling the reactor flask in an ice bath. The precipitate was filtered on a filter paper. The aqueous layer was extracted with Et2O (3 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous CaCl2. Evaporation of solvent and purification of the residue by column chromatography (hexane–EtOAc–MeOH = 5:2:1) gave (Z)-(2-ethyl-1-hexenyl-1-d)diphenylphosphine oxide (0.50 g, 79%) as a colorless oil. Rf = 0.30. 1H NMR (500 MHz, CDCl3): δ = 0.70 [t, J = 7.3 Hz, 3 Н, С(12)Н3], 1.04 [t, J = 7.4 Hz, 2 Н, С(8)Н3], 1.05–1.15 [m, 2 Н, С(11)Н2], 1.15–1.25 [m, 2 Н, С(10)Н2], 2.22 [q, J = 7.4 Hz, 2 Н, С(7)Н2], 2.46 [t, J = 8.0 Hz, 2 Н, С(9)Н2], 7.35–7.85 (m, 10 Н, Ph). 13C NMR (125 MHz, CDCl3): δ = 12.09 [C(8)], 13.76 [C(12)], 22.71 [С(11)], 30.27 [C(10)], 31.14 [d, J = 16.3 Hz, С(7)], 33.91 [d, J = 7.6 Hz, С(9)], 128.41 [d, J = 11.8 Hz, 4 C, C(3)], 130.85 [d, J = 9.7 Hz, 4 C, C(2)], 131.26 [d, J = 1.6 Hz, 2 C, С(4)], 135.18 [d, J = 103.9 Hz, 2 C, С(1)], 170.03 [C(6)]. 31P NMR (200 MHz, CDCl3): δ = 20.49. MS: m/z (%) = 313 (36) [М]+, 312 (7) [М – 1]+, 270 (68), 256 (4), 202 (100), 201 (47) [Ph2PO], 155 (13), 125 (17). Anal. Calcd for С20Н24DOP (%): C, 76.65. Found: C, 76.73.
- 24 Benn R, Rufińska A. Angew. Chem., Int. Ed. Engl. 1986; 25: 861
- 25 Ramazanov IR, Kadikova RN, Saitova ZR, Dzhemilev UM. Asian J. Org. Chem. 2015; 4: 1301
- 26a Ramazanov IR, Kadikova RN, Dzhemilev UM. Zh. Org. Khim. 2013; 49: 335
- 26b Ramazanov IR, Kadikova RN, Zosim TP, Dzhemilev UM. Synthesis 2015; 47: 2670
- 26c Kadikova RN, Ramazanov IR, Zosim TP, Dzhemilev UM. J. Organomet. Chem. 2014; 763-764: 14
- 27 Muslukhov RR, Khalilov LM, Ramazanov IR, Sharipova AZ, Ibragimov AG, Dzhemilev UM. Russ. Chem. Bull. 1997; 46: 2082
- 28 Dzhemilev UM, Ibragimov AG, Zolotarev AP. Mendeleev Commun. 1992; 2: 135
- 29 Corbridge DE. C. Phosphorus: Chemistry, Biochemistry and Technology . 6th ed. CRC Press; Boca Raton: 2013
- 30 Wipf P, Lim S. Angew. Chem., Int. Ed. Engl. 1993; 32: 1068