Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2016; 48(23): 4228-4236
DOI: 10.1055/s-0035-1562624
DOI: 10.1055/s-0035-1562624
paper
Copper-Catalyzed Cyclization/Oxidation/Aromatization Cascade: Efficient Synthesis of Trifluoromethylated Pyrrolo[2,1-a]isoquinolines
Further Information
Publication History
Received: 27 June 2015
Accepted after revision: 26 July 2016
Publication Date:
05 September 2016 (online)
§ These authors contributed equally.
Abstract
An efficient copper-catalyzed synthesis of 3-(trifluoromethyl)pyrrolo[2,1-a]isoquinolines was achieved through a sequential one-pot two-step three-component reaction of a substituted isoquinoline, a terminal aryne, and methyl 4,4,4-trifluorobut-2-ynoate, with air as an oxygen source. This oxidative cyclization proceeds through an initial copper(I)-catalyzed C–H alkynylation to give alkynyl-1,2-dihydroisoquinolines that subsequently undergo a copper(II)-assisted intramolecular cyclization under mild conditions to give the desired products in moderate to excellent yields.
Key words
trifluoromethylation - isoquinolines - copper catalysis - multicomponent reaction - cascade reaction - C–H functionalizationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562624.
- Supporting Information
-
References
- 1a Bentley KW. Nat. Prod. Rep. 2006; 23: 444
- 1b Scott JD. R, Williams M. Chem. Rev. 2002; 102: 1669
- 1c Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
- 1d Kielland N, Lavilla R. Top. Heterocycl. Chem. 2010; 25: 127
- 2a Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2007; 108: 264
- 2b Pla D, Albericio F, Álvarez M. Med. Chem. Commun. 2011; 2: 689
- 2c Fukuda T, Ishibashi F, Iwao M. Heterocycles 2011; 83: 491
- 2d Handy ST, Zhang Y. Org. Prep. Proced. Int. 2005; 37: 411
- 2e Pla D, Albericio F, Álvarez M. Anti-Cancer Agents Med. Chem. 2008; 8: 746
- 3a Casagrande C, Invernizzi A, Ferrini R, Ferrari GG. J. Med. Chem. 1968; 11: 765
- 3b Pla D, Marchal A, Olsen CA, Francesch A, Cuevas C, Albericio F, Álvarez M. J. Med. Chem. 2006; 49: 3257
- 3c Bradsher CK, Kimber RW. L. J. Org. Chem. 1965; 30: 1846
- 4a Yuan Z, Wang H.-Y, Mu X, Chen P, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2015; 137: 2468
- 4b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 4c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 4d Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 4e Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 4f Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
- 4g Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 5a Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 5b Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
- 5c Alonso C, Martinez de Marigorta E, Rubiales G, Palacis F. Chem. Rev. 2015; 115: 1847
- 6a Katritzky AR, Qiu G, Yang B, He H.-Y. J. Org. Chem. 1999; 64: 7618
- 6b Yu C, Zhang Y, Zhang S, Li H, Wang W. Chem. Commun. 2011; 47: 1036
- 6c Wang H.-T, Lu C.-D. Tetrahedron Lett. 2013; 54: 3015
- 6d Rueping M, Leonori D, Poisson T. Chem. Commun. 2011; 47: 9615
-
6e Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Rong J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
- 7 Verma AK, Kesharwani T, Singh J, Tandon V, Larock RC. Angew. Chem. Int. Ed. 2009; 48: 1138
- 8a Banwell MG, Flynn BL, Hockless DC. R, Longmore RW, Rae AD. Aust. J. Chem. 1999; 52: 755
- 8b Tóth J, Nedves A, Dancsó A, Blaskó G, Tőke L, Nyerges M. Synthesis 2007; 1003
- 8c Chen L, Xu M.-H. Adv. Synth. Catal. 2009; 351: 2005
-
9a Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
- 9b Bruneau C. Angew. Chem. Int. Ed. 2005; 44: 2328
-
9c Zhang L, Sun J, Kozmin S. Adv. Synth. Catal. 2006; 348: 2271
-
9d Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
-
9e Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
- 10a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
- 10b Du F.-T, Ji J.-X. Chem. Sci. 2012; 3: 460
- 10c Wei W, Hu X.-Y, Yan X.-W, Zhang Q, Cheng M, Ji J.-X. Chem. Commun. 2012; 48: 305
- 10d Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
- 10e Zhang C, Xu Z, Zhang L, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 11088
- 10f Zhang L, Ang GY, Chiba S. Org. Lett. 2011; 13: 1622
- 10g Chiba S, Zhang L, Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
- 10h Toh K.-K, Sanjaya S, Sahnoun S, Chong S.-Y, Chiba S. Org. Lett. 2012; 14: 2290
- 10i Xia X, Zhang L, Song X, Liu X, Liang Y. Org. Lett. 2012; 14: 2480
- 10j Xie P, Wang Z.-Q, Deng G.-B, Song R.-J, Xia J.-D, Hu M, Li J. Adv. Synth. Catal. 2013; 355: 2257
- 10k Wang Z.-Q, Zhang W.-W, Gong L.-B, Tang R.-Y, Yang X.-H, Liu Y, Li J.-H. Angew. Chem. Int. Ed. 2011; 50: 8968
- 11a Wei J, Chen J, Xu J, Cao L, Deng H, Sheng W, Zhang H, Cao W. J. Fluorine Chem. 2012; 133: 146
- 11b Qian J, Cao W, Zhang H, Chen J, Zhu S. J. Fluorine Chem. 2007; 128: 207
- 11c Lu L, Wei J, Chen J, Zhang J, Deng H, Shao M, Zhang H, Cao W. Tetrahedron 2009; 65: 9152
- 11d Xu J, Wei J, Bian L, Zhang J, Chen J, Deng H, Wu X, Zhang H, Cao W. Chem. Commun. 2011; 47: 3607
- 11e Lu L, Cao W, Chen J, Zhang H, Zhang J, Chen H, Wei J, Deng H, Shao M. J. Fluorine Chem. 2009; 130: 295
- 11f Yu H, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. Eur. J. Org. Chem. 2012; 3142
- 11g Han J, Cao L, Bian L, Chen J, Deng H, Shao M, Jin Z, Zhang H, Cao W. Adv. Synth. Catal. 2013; 355: 1345
- 11h Cao L, Shen D, Wei J, Chen J, Deng H, Shao M, Shi J, Zhang H, Cao W. Eur. J. Org. Chem. 2014; 2460
- 11i Han J, Shen Y, Sun X, Yao Q, Chen J, Deng H, Shao M, Fan B, Zhang H, Cao W. Eur. J. Org. Chem. 2015; 2061
- 11j Shen D, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. Org. Lett. 2015; 17: 3283
- 11k Xu Z, Sun T, Cai Q, Ni F, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. J. Fluorine Chem. 2016; 181: 45
- 12 Methyl 4,4,4-Trifluoro-3-[1-(phenylethynyl)isoquinolin-2(1H)-yl]but-2-enoate (4a) Yellow solid; mp 100.5–101.3 °C. IR (KBr): 2951, 1740, 1655, 1562, 1398, 1263, 1209, 1163, 1114, 783 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.83 (s, 3 H), 5.63 (s, 1 H), 6.07–6.08 (m, 1 H), 6.16 (s, 1 H), 6.38–6.40 (m, 1 H), 7.16–7.17 (m, 1 H), 7.23–7.33 (m, 6 H), 7.37–7.38 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 52.4, 53.2, 85.1, 86.5, 108.7, 120.7 (q, 1 J C–F = 277.2 Hz), 122.1, 124.9, 125.8, 127.4, 128.1, 128.3, 128.8, 128.9, 129.6, 132.0, 140.5 (q, 2 J C–F = 34.0 Hz), 165.0. 19F NMR (470 MHz, CDCl3): δ = –60.3 (s, CF3). MS (ESI): m/z = 384 [M + H]+; HRMS (ESI); m/z [M + H]+ calcd for C22H17F3NO2: 384.1206; found: 384.1198.
- 13 Fan X, Li N, Shen T, Cui X.-M, Lv H, Zhu H.-B, Guan Y.-H. Tetrahedron 2014; 70: 256
- 14 CCDC-1026341 (5a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 15a Kumaraswamy G, Rambabu D, Jayaprakash N, Rao GV, Sridhar B. Eur. J. Org. Chem. 2009; 4158
- 15b Yadav JS, Reddy BV. S, Yadav NN, Gupta MK, Sridhar B. J. Org. Chem. 2008; 73: 6857
- 15c Xu Z, Ni F, Han J, Tao L, Deng H, Shao M, Chen J, Zhang H, Cao W. Eur. J. Org. Chem. 2016; 2959
- 16 Hamper BC. Org. Synth. Coll. Vol. IX . Wiley; London: 1998: 436