Synthesis 2016; 48(23): 4237-4245
DOI: 10.1055/s-0035-1562612
paper
© Georg Thieme Verlag Stuttgart · New York

Model Studies Toward the Enantioselective Synthesis of Perhydrohistrionicotoxin: A Free-Radical Approach to the Azaspirocycle Core

Eduardo Peralta-Hernández
Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México   Email: acordero@unam.mx
,
Alejandro Cordero-Vargas*
Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México   Email: acordero@unam.mx
› Author Affiliations
Further Information

Publication History

Received: 07 June 2016

Accepted after revision: 10 July 2016

Publication Date:
18 August 2016 (online)


Abstract

A free-radical-based protocol for the construction of the azaspirocyclic core of the natural product perhydrohistrionicotoxin is described. The adopted strategy is based on the use of an enantiomerically pure allylamine bearing a properly substituted cyclohexane at the allylic position as a radical acceptor. An unexpected reductive atom transfer radical addition reaction, followed by lactamization and removal of the chiral auxiliary is achieved in a single manipulation.

Supporting Information

 
  • References

    • 1a Daly JW, Karle I, Myers CW, Tokuyama T, Waters JA, Witkop B. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 1870
    • 1b Witkop B, Gössinger E In The Alkaloids . Brossi A. Academic Press; New York: 1983: 139-251
    • 1c Takahashi K, Witkop B, Brossi A, Maleque MA, Albuquerque EX. Helv. Chim. Acta 1982; 65: 252
    • 2a Carey SC, Aratani M, Kishi Y. Tetrahedron Lett. 1985; 26: 5887
    • 2b Karatholuvhu MS, Sinclair A, Newton AF, Alcaraz M.-L, Stockman RA, Fuchs PL. J. Am. Chem. Soc. 2006; 128: 12656
    • 2c Adachi, Kamei N, Yokoshima S, Fukuyama T. Org. Lett. 2011; 13: 4446
  • 3 For a review of the synthetic strategies for the synthesis of the histrionicotoxin family of alkaloids, see: Sinclair A, Stockman RA. Nat. Prod. Rep. 2007; 24: 298
  • 4 Corey EJ, Arnett JF, Widiger GN. J. Am. Chem. Soc. 1975; 97: 430
  • 5 Wilson MS, Padwa A. J. Org. Chem. 2008; 73: 9601
  • 6 Tanner D, Sellén M, Bäckvall JE. J. Org. Chem. 1989; 54: 3374
  • 7 Keck GE, Yates JB. J. Org. Chem. 1982; 47: 3590
  • 8 Godleski SA, Heacock DJ, Meinhart JD, Van Wallendael S. J. Org. Chem. 1983; 48: 2101
  • 9 Duhamel P, Kotera M, Monteil T, Marabout B. J. Org. Chem. 1989; 54: 4419
    • 10a Kim D, Shim PJ, Lee J, Park CW, Hong SW, Kim S. J. Org. Chem. 2000; 65: 4864
    • 10b Deyine A, Poirer J.-M, Duhamel P. Synlett 2008; 260
    • 10c Tanner D, Hagberg L, Poulsen A. Tetrahedron 1999; 55: 1427
    • 10d Coote SC, Moore SP, O’Brien P, Withwood AC, Gilday J. J. Org. Chem. 2008; 73: 7852
  • 11 Winkler JD, Hershberger PM. J. Am. Chem. Soc. 1989; 111: 4852
  • 12 Tanner D, Hagberg L. Tetrahedron 1998; 54: 7907
  • 13 Diedrichs N, Krelaus R, Gedrath I, Westermann B. Can. J. Chem. 2002; 80: 686
  • 14 Brasholz M, Macdonald JM, Saubern S, Ryan JH, Holmes AB. Chem. Eur. J. 2010; 16: 11471
  • 15 Peralta-Hernández E, Cortezano-Arellano O, Cordero-Vargas A. Tetrahedron Lett. 2011; 52: 6899
  • 16 León-Rayo DF, Morales-Chamorro M, Cordero-Vargas A. Eur. J. Org. Chem. 2016; 1739
    • 17a Yoshida M, Komatsuzaki Y, Ihara M. Org. Lett. 2008; 10: 2083
    • 17b Imada Y, Yuassa M, Nakamura I, Murahashi S.-I. J. Org. Chem. 1994; 59: 2282
  • 18 Prusov E, Maier ME. Tetrahedron 2007; 63: 10486

    • Although benzylamines are usually stable under these conditions, there are some reports of oxidative debenzylation with CAN or DDQ, where a free radical is presumably an intermediate, see:
    • 19a Bull SD, Davies SG, Fenton G, Mulvaney AW, Prasad RS, Smith AD. J. Chem. Soc., Perkin Trans. 1 2000; 3765
    • 19b Sampson PB, Honek JF. Org. Lett. 1999; 1: 1395
    • 20a Mimura M, Hayashida M, Nomiyama K, Ikegami S, Iida Y, Tamura M, Hiyama Y, Ohishi Y. Chem. Pharm. Bull. 1993; 41: 1971
    • 20b Guindon Y, Liu Z, Jung G. J. Am. Chem. Soc. 1997; 119: 9289
    • 20c Rapoport H, Chen Y, Mohareb RM, Ahn JH, Sim TB, Ho JZ. Chem. Pharm. Bull. 2003; 51: 1153
    • 20d Tong HM, Martin M.-T, Chiaroni A, Bénéchie M, Marazano C. Org. Lett. 2005; 7: 2437
    • 20e Almahli H, Hendra F, Troufflard C, Cavé C, Joseph D, Delarue-Cochin S. Chirality 2011; 23: 265
  • 21 Lifchits O, Mahlau M, Reisinger CM, Lee A, Farès C, Polyak I, Gopakumar G, Thiel W, List B. J. Am. Chem. Soc. 2013; 135: 6677
    • 22a Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
    • 22b Ellman JA. Pure Appl. Chem. 2003; 75: 39
    • 22c Ellman JA, Owens TD, Tang TP. Acc. Chem. Res. 2002; 35: 984
  • 23 Although List’s original paper reported a 97:3 er in the epoxidation step (see ref. 21), we could only partially reproduce this result, since the indirect er was 4:1, measured on compounds 21 and 22.
  • 24 Ibuka T, Minakata H, Mitsui Y, Hayashi K, Taga T, Inbushi Y. Chem. Pharm. Bull. 1982; 30: 2840
  • 25 Although compound 27 was reported by Ibuka, the spectroscopic data were not fully described. However, the key signals described for the title compound in ref. 24 matched with our data.
  • 26 CCDC 1474251 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.