Subscribe to RSS
DOI: 10.1055/s-0035-1562467
Configurationally Stable Doubly Bridged Biphenyl Azocines through Copper-Catalyzed Double Carbene Insertions into the Corresponding Azepines
Publication History
Received: 03 June 2016
Accepted after revision: 22 June 2016
Publication Date:
03 August 2016 (online)
In memory of Jean-François Normant
Abstract
Doubly bridged biphenyl azocines can be prepared in a single step through copper-catalyzed reactions of a doubly bridged biphenyl azepine and diazodiester reagents. Double [1,2]-Stevens rearrangements occur at 100 °C to afford doubly tethered eight-membered rings (49 to 61%) as trans and cis regioisomers (1:1 ratio). These products present an axial chirality. ECD and VCD analyses of the separated enantiomers (CSP-HPLC) were used to assign the absolute configuration. High configurational stability is observed for both regioisomers as racemization does not occur after 1 week of heating at 208 °C in dodecane (ΔG ‡ > 41 kcal·mol–1). Interestingly, reactions performed at 40 °C retain a certain level of enantiospecificity (82–86%), avoiding, for the most part, thermal racemization of the starting material.
Key words
azepine - azocine - carbenes - configurational stability - [1,2]-Stevens rearrangement - ylidesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562467.
- Supporting Information
-
References
- 1 Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 2a McCarthy M, Guiry PJ. Tetrahedron 2001; 57: 3809
- 2b Schenker S, Zamfir A, Freund M, Tsogoeva SB. Eur. J. Org. Chem. 2011; 2209
- 2c Rosini C, Franzini L, Raffaelli A, Salvadori P. Synthesis 1992; 503
- 3 Wenner W. J. Org. Chem. 1951; 16: 1475
- 4a Cheetham CA, Massey RS, Pira SL, Pritchard RG, Wallace TW. Org. Biomol. Chem. 2011; 9: 1831
- 4b Pira SL, Wallace TW, Graham JP. Org. Lett. 2009; 11: 1663
- 5 Mikami K, Aikawa K, Yusa Y, Jodry JJ, Yamanaka M. Synlett 2002; 1561
- 6a Marchetti F, Tanturli R, Pertici P, Rosini C. Inorg. Chim. Acta 1999; 294: 28
- 6b Zalubovskis R, Bouet A, Fjellander E, Constant S, Linder D, Fischer A, Lacour J, Privalov T, Moberg C. J. Am. Chem. Soc. 2008; 130: 1845
- 6c Fjellander E, Szabo Z, Moberg C. J. Org. Chem. 2009; 74: 9120
- 6d Sabiah S, Varghese B, Murthy NN. Dalton Trans. 2009; 9770
- 7a Lacour J, Monchaud D, Marsol C. Tetrahedron Lett. 2002; 43: 8257
- 7b Ooi T, Uematsu Y, Kameda M, Maruoka K. Angew. Chem. Int. Ed. 2002; 41: 1551
- 7c Page PC. B, Rassias GA, Barros D, Ardakani A, Bethell D, Merifield E. Synlett 2002; 580
- 7d Lygo B, Allbutt B, James SR. Tetrahedron Lett. 2003; 44: 5629
- 7e Scafato P, Cunsolo G, Labano S, Rosini C. Tetrahedron 2004; 60: 8801
- 7f Vachon J, Pérollier C, Monchaud D, Marsol C, Ditrich K, Lacour J. J. Org. Chem. 2005; 70: 5903
- 7g Goncalves MH, Martinez A, Grass S, Page PC. B, Lacour J. Tetrahedron Lett. 2006; 47: 5297
- 7h Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 7i Novikov R, Vachon J, Lacour J. Chimia 2007; 61: 236
- 7j Page PC. B, Buckley BR, Barros D, Blacker AJ, Marples BA, Elsegood MR. J. Tetrahedron 2007; 63: 5386
- 7k Novikov R, Bernardinelli G, Lacour J. Adv. Synth. Catal. 2008; 350: 1113
- 7l Lygo B, Allbutt B, Beaumont DJ, Butt U, Gilks JA. R. Synlett 2009; 675
- 7m Lygo B, Davison C, Evans T, Gilks JA. R, Leonard J, Roy CE. Tetrahedron 2011; 67: 10164
- 7n Lygo B, Allbutt B, Kirton EH. M. Tetrahedron Lett. 2005; 46: 4461
- 8a Maigrot N, Mazaleyrat JP, Welvart Z. J. Org. Chem. 1985; 50: 3916
- 8b Hawkins JM, Fu GC. J. Org. Chem. 1986; 51: 2820
- 9a Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 1999; 121: 6519
- 9b Maruoka K. Chem. Rec. 2010; 10: 254
- 9c Vachon J, Lacour J. Chimia 2006; 60: 266
- 9d Page PC. B, Bartlett CJ, Chan Y, Day D, Parker P, Buckley BR, Rassias GA, Slawin AM. Z, Allin SM, Lacour J, Pinto A. J. Org. Chem. 2012; 77: 6128
- 10a Aggarwal VK, Wang MF. Chem. Commun. 1996; 191
- 10b Page PC. B, Buckley BR, Blacker AJ. Org. Lett. 2004; 6: 1543
- 10c Vachon J, Lauper C, Ditrich K, Lacour J. Tetrahedron: Asymmetry 2006; 17: 2334
- 10d Page PC. B, Farah MM, Buckley BR, Blacker AJ. J. Org. Chem. 2007; 72: 4424
- 10e Novikov R, Bernardinelli G, Lacour J. Adv. Synth. Catal. 2009; 351: 596
- 10f Novikov R, Lacour J. Tetrahedron: Asymmetry 2010; 21: 1611
- 11a Liu QZ, Wang XL, Luo SW, Zheng BL, Qin DB. Tetrahedron Lett. 2008; 49: 7434
- 11b Kano T, Yamaguchi Y, Maruoka K. Chem. Eur. J. 2009; 15: 6678
- 11c Liang D.-C, Luo R.-S, Yin L.-H, Chan AS. C, Lu G. Org. Biomol. Chem. 2012; 10: 3071
- 12a Mislow K, Simon E, Glass MA. W, Wahl GH, Hopps HB. J. Am. Chem. Soc. 1964; 86: 1710
- 12b Tichy M, Gunterova J, Zavada J. Collect. Czech. Chem. Commun. 1997; 62: 1080
- 13 Novikov R, Vachon J, Lacour J. Chimia 2007; 61: 236
- 14 Storch G, Trapp O. Angew. Chem. Int. Ed. 2015; 54: 3580
- 15 Vachon J, Bernardinelli G, Lacour J. Chem. Eur. J. 2010; 16: 2797
- 16 Eshdat L, Shabtai E, Saleh SA, Sternfeld T, Saito M, Okamoto Y, Rabinovitz M. J. Org. Chem. 1999; 64: 3532
- 17a Markó IE. The Stevens and Related Rearrangements. In Comprehensive Organic Synthesis. Vol. 3. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 913-974
- 17b Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
- 17c Kumar RR, Vanitha KA, Perumal S In Stevens rearrangement. John Wiley & Sons, Inc; New York: 2009: 516-530
- 17d Bach R, Harthong S, Lacour J. Nitrogen- and Sulfur-Based Stevens and Related Rearrangements. In Comprehensive Organic Synthesis. 2nd ed., Vol. 3; Marek I. Elsevier; Oxford: 2014: 992-1037
- 18a Vial L, Goncalves MH, Morgantini PY, Weber J, Bernardinelli G, Lacour J. Synlett 2004; 1565
- 18b Gonçalves-Farbos M.-H, Vial L, Lacour J. Chem. Commun. 2008; 829
- 18c Michon C, Sharma A, Bernardinelli G, Francotte E, Lacour J. Chem. Commun. 2010; 46: 2206
- 18d Sharma A, Guénée L, Naubron J.-V, Lacour J. Angew. Chem. Int. Ed. 2011; 50: 3677
- 18e Sharma A, Besnard C, Guénée L, Lacour J. Org. Biomol. Chem. 2012; 10: 966
- 18f Harthong S, Bach R, Besnard C, Guénée L, Lacour J. Synthesis 2013; 45: 2070
- 19 N-Alkyl derivatives were tested. Decomposition of diazo compounds 6 occurred but no reactivity with the substrates was observed.
- 20 Molchanov AP, Stepakov AV, Kopf J, Zenkevich IG, Kostikov RR. Russ. Chem. Bull., Int. Ed. 2001; 50: 2144
- 21 Stepakov AV, Molchanov AP, Magull J, Vidovic D, Starova GL, Kopf J, Kostikov RR. Tetrahedron 2006; 62: 3610
- 22 Ellis-Holder KK, Peppers BP, Kovalevsky AY, Diver ST. Org. Lett. 2006; 8: 2511
- 23 More specifically, the 43.5° value for 3a matches perfectly the angles (43–44°) measured on two bislactam DDB crystallographic structures: CSD ref codes GEMQOE and GEMQUK, see: Tichy M, Ridvan L, Holy P, Zavada J, Cisarova I, Podlaha J. Tetrahedron: Asymmetry 1998; 9: 227
- 24 Tozzi F, Ley SV, Kitching MO, Baxendale IR. Synlett 2010; 1919
- 25a Jamrozik J, Zeslawski W, Grochowski J, Serda PC, Dauter Z. Liebigs Ann. 1996; 555
- 25b Mullen K, Heinz W, Klarner FG, Roth WR, Kindermann I, Adamczak O, Wette M, Lex J. Chem. Ber. 1990; 123: 2349
- 26 As mentioned, two bislactam DDB with similar symmetry to compounds 4 and 5 were reported by Zavada and collaborators. In that case, the assignment was made by analogy to that of compounds of type 3a. See ref. 23.
- 27a Bunnenberg E, Djerassi C, Mislow K, Moscowitz A. J. Am. Chem. Soc. 1962; 84: 2823
- 27b Mislow K, Hyden S, Schaefer H. J. Am. Chem. Soc. 1962; 84: 1449
- 27c Mislow K, Bunnenberg E, Records R, Wellman K, Djerassi C. J. Am. Chem. Soc. 1963; 85: 1342
- 28a Borecka B, Cameron TS, Linden A, Rashidi-Ranjbar P, Sandström J. J. Am. Chem. Soc. 1990; 112: 1185
- 28b Loncar-Tomascovic L, Sarac-Arneri R, Hergold-Brundic A, Nagl A, Mintas M, Sandstrom J. Helv. Chim. Acta 2000; 83: 479
- 28c Sandstrom J. Chirality 2000; 12: 162
- 29 Aamouche A, Devlin FJ, Stephens PJ. J. Am. Chem. Soc. 2000; 122: 2346
- 30a Freedman TB, Cao X, Dukor RK, Nafie LA. Chirality 2003; 15: 743
- 30b Holzwarth G, Hsu EC, Mosher HS, Faulkner TR, Moscowitz A. J. Am. Chem. Soc. 1974; 96: 251
- 30c Nafie LA, Keiderling TA, Stephens PJ. J. Am. Chem. Soc. 1976; 98: 2715
- 31 The configurational stability of 3a was determined by VT-ECD (ΔG ‡ 26.1 kcal·mol–1). For this purpose, acetonitrile solutions of (–)- and (+)-3a were heated at elevated temperatures (70, 75, 80 and 85 °C). In both cases, the racemization was monitored by ECD over periods of 600 seconds at a single wavelength (220 nm). Details can be found in the Supporting Information.
- 32 Samples were used in enantioenriched rather than enantiopure form for availability reasons.