Synlett 2016; 27(15): 2241-2245
DOI: 10.1055/s-0035-1562135
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Acylation of Quinolines and Isoquinolines with Arylmethanols via Oxidative Cross-Dehydrogenative Coupling Reactions

Mehdi Adib*
a   School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Rahim Pashazadeh
a   School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Saideh Rajai-Daryasarei
a   School of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
,
Roya Kabiri
b   NMR Lab, Faculty of Chemistry, Tabriz University, Tabriz, Iran
,
Seyed Jamal Addin Gohari
c   Department of Chemistry, Imam Hossein University, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 26 January 2016

Accepted after revision: 10 April 2016

Publication Date:
18 May 2016 (online)


Abstract

An efficient acylation of quinolines and isoquinolines is described by use of arylmethanols as the acylating agents through a C–C bond formation via an oxidative cross-dehydrogenative coupling (CDC) strategy. This C-aroylation reaction was carried out by use of K2S2O8 as oxidant and methyltrioctylammonium chloride (Aliquat 336) as a transfer agent in MeCN at 80 °C under transition-metal-free conditions.

Supporting Information

 
  • References and Notes

    • 1a Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 1b Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1c Wencel-Delord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1d Sun CL, Li BJ, Shi ZJ. Chem. Rev. 2011; 111: 1293
    • 1e Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 1f Mousseau JJ, Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 2a Sun CL, Shi ZJ. Chem. Rev. 2014; 114: 9219
    • 2b Bering L, Antonchick AP. Org. Lett. 2015; 17: 3134
    • 2c Ueda M, Nishimura K, Kashima R, Ryu I. Synlett 2012; 23: 1085
    • 2d Xiao T, Li L, Lin G, Mao ZW, Zhou L. Org. Lett. 2014; 16: 4232
    • 3a Li BJ, Tian SL, Fang Z, Shi ZJ. Angew. Chem. Int. Ed. 2008; 47: 1115
    • 3b Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 3c Campbell AN, Meyer EB, Stahl SS. Chem. Commun. 2011; 47: 10257
    • 3d Yoo WJ, Li CJ. Top. Curr. Chem. 2010; 292: 281
    • 3e Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 3f Sun CL, Li BJ, Shi ZJ. Chem. Rev. 2011; 111: 1293
    • 3g Girard SA, Knauber T, Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
    • 4a Bermejo A, Andreu I, Suvire F, Leonce S, Caignard DH, Renard P, Pierre A, Enriz RD, Cortes D, Cabedo N. J. Med. Chem. 2002; 45: 5058
    • 4b Somdej K, Kwanjai K, Ratsami L. J. Nat. Prod. 2007; 70: 1536
    • 4c Gerhard B, Liang ZG, Tobias B, Gabi B, Thomas K, Holger B, Reto B, Virima M. Chem. Eur. J. 2013; 19: 916
    • 4d Werbovetz KA, Bhattacharjee AK, Brendle JJ, Scovill JP. Bioorg. Med. Chem. 2000; 8: 1741
    • 4e Savinainen JR, Kokkola T, Salo OM. H, Poso A, Järvinen T, Laitinen JT. Br. J. Pharmacol. 2005; 145: 636
    • 4f Kouznetsov VV, Meléndez Gómez CM, Derita MG, Svetaz L, del Olmo E, Zacchino SA. Bioorg. Med. Chem. 2012; 20: 6506
  • 5 Gao F, Liu H, Li L, Guo J, Wang Y, Zhao M, Peng S. Bioorg. Med. Chem. Lett. 2015; 25: 4434
  • 6 Nishikawa-Shimono R, Sekiguchi Y, Koami T, Kawamura M, Wakasugi D, Watanabe K, Wakahara S, Kimura K, Yamanobe S, Takayama T. Bioorg. Med. Chem. 2013; 21: 7674
  • 7 Costa EV, Pinheiro ML, Barison A, Campos FR, Salvador MJ, Maia BH. L. N. S, Cabral EC, Eberlin MN. J. Nat. Prod. 2010; 73: 1180
  • 8 Reux B, Nevalainen T, Raitio KH, Koskinen AM. P. Bioorg. Med. Chem. 2009; 17: 4441
    • 9a Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
    • 9b Siddaraju Y, Lamani M, Prabhu KR. J. Org. Chem. 2014; 79: 3856
    • 9c Ali W, Behera A, Guin S, Patel BK. J. Org. Chem. 2015; 80: 5625
    • 9d Wan M, Lou H, Liu L. Chem. Commun. 2015; 51: 13953
    • 9e Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, Liu L. Org. Biomol. Chem. 2015; 13: 11561
    • 9f Siddaraju Y, Prabhu KR. Tetrahedron 2016; 72: 959
    • 10a Xie Z, Liu L, Chen W, Zheng H, Xu Q, Yuan H, Lou H. Angew. Chem. Int. Ed. 2014; 53: 3904
    • 10b Liu X, Meng Z, Li C, Lou H, Liu L. Angew. Chem. Int. Ed. 2015; 54: 6012
    • 10c Sun S, Li C, Floreancig PE, Lou H, Liu L. Org. Lett. 2015; 17: 1684
    • 10d Liu X, Sun S, Meng Z, Lou H, Liu L. Org. Lett. 2015; 17: 2396
    • 11a Adib M, Soheilizad M, Zhu LG, Wu J. Synlett 2015; 26: 177
    • 11b Adib M, Soheilizad M, Rajai-Daryasarei S, Mirzaei P. Synlett 2015; 26: 1101
    • 11c Adib M, Bayanati M, Soheilizad M, Janatian Ghazvini H, Tajbakhsh M, Amanlou M. Synlett 2014; 25: 2918
    • 11d Adib M, Sheikhi E, Haghshenas P, Rajai-Daryasarei S, Bijanzadeh HR. Zhu L. G. Tetrahedron Lett. 2014; 55: 4983
    • 11e Adib M, Bayanati M, Soheilizad M, Janatian Ghazvini H, Tajbakhsh M, Amanlou M. Synlett 2014; 25: 2918
  • 12 Shankar R, More Satish S, Madhubabu MV, Vembu N, Syam Kumar UK. Synlett 2012; 23: 1013
  • 13 Aysola DP, Gibson MS. Can. J. Chem. 1977; 55: 435
  • 14 General Procedure for the Preparation of Compounds 3 and 5, Exemplified with 3a In a 10 mL sealable tube, benzyl alcohol (2a, 0.216 g, 2 mmol), Aliquat 336 (0.121 g, 0.3 mmol), and K2S2O8 (0.675 g, 2.5 mmol) were added to a solution of isoquinoline (1a, 0.129 g, 1.0 mmol) in MeCN (3 mL). The resultant mixture was heated at 80 °C for 2 h. After completion of the reaction, as indicated by TLC, the reaction mixture was cooled to ambient temperature and treated with sat. aq NaHCO3 (10 mL). The mixture was extracted with EtOAc (3 × 10 mL), and the combined organic layers were dried over Na2SO4, filtered, and the solvent was evaporated under vacuum. The residue was purified by column chromatography using n-hexane–EtOAc (8:1) as eluent to afford 3a. (Isoquinolin-1-yl)(phenyl)methanone (3a) Yield: 0.198 g (85%); white solid; mp 74–75 °C. 1H NMR (300.1 MHz, CDCl3): δ = 7.47 (dd, J = 7.7, 7.4 Hz, 2 H, 2 × CH), 7.60–7.63 (m, 2 H, 2 × CH), 7.75 (t, J = 7.5 Hz, 1 H, CH), 7.81 (d, J = 5.9 Hz, 1 H, CH), 7.94 (d, J = 8.6 Hz, 1 H, CH), 7.96 (d, J = 7.7 Hz, 2 H, 2 × CH), 8.20 (d, J = 8.6 Hz, 1 H, CH), 8.54 (d, J = 5.9 Hz, 1 H, CH). 13C NMR (75.1 MHz, CDCl3): δ = 123.1, 125.8, 126.1, 127.3, 127.9, 128.3, 130.9, 131.2, 133.5, 136.4, 136.6, 141.7, 155.5, 194.1. (4-Chlorophenyl)(quinolin-2-yl)methanone (5c) Yield 0.187 g (70%); white solid; mp 128–129 °C. 1H NMR (300.1 MHz, CDCl3): δ = 7.45 (d, J = 8.5 Hz, 2 H, 2 × CH), 7.62 (t, J = 8.0 Hz, 1 H, CH), 7.75 (t, J = 7.2 Hz, 1 H, CH), 7.88 (d, J = 7.5 Hz, 1 H, CH), 8.12 (d, J = 8.7 Hz, 1 H, CH), 8.19 (d, J = 7.9 Hz, 1 H, CH), 8.24 (d, J = 8.5 Hz, 2 H, 2 × CH), 8.35 (d, J = 8.7 Hz, 1 H, CH). 13C NMR (75.1 MHz, CDCl3): δ = 119.9, 127.5, 128.5, 128.9, 129.1, 130.3, 130.6, 133.3, 134.6, 137.0, 140.1, 147.2, 154.3, 193.1.