Synlett 2016; 27(11): 1711-1714
DOI: 10.1055/s-0035-1562092
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Oxidative Coupling Reaction of N-Acyl Glycine Esters and Malonates

Hui Yu*
a   Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: yuhui@tongji.edu.cn
b   Shanghai Key Laboratory of Chemical Assessment and Sustainability, 1239 Siping Road, Shanghai, 200092, P. R. of China
,
Zhongyang Liu
a   Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: yuhui@tongji.edu.cn
,
Jingbo Lin
a   Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: yuhui@tongji.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 24 January 2016

Accepted after revision: 23 March 2016

Publication Date:
21 April 2016 (online)


Abstract

An iron-catalyzed direct C–C double-bond formation process is described in this paper. Using DTBP as the oxidant and FeCl3·6H2O (20 mol%) as the catalyst, N-2-pyridinecarbonyl glycine esters were coupled with malonates to provide amido acrylates in moderate to good yields. A possible reaction pathway for the formation of the products is also discussed in this paper.

Supporting Information

 
  • References and Notes

    • 1a Yamada Y, Kubota T, Nishio M, Tanaka K. J. Am. Chem. Soc. 2014; 136: 6505
    • 1b Taylor AF, Amundsen SK, Guttman M, Lee KK, Luo J, Ranish J, Smith GR. J. Mol. Biol. 2014; 426: 3479
    • 1c Sasaki Y, Ambo A. Int. J. Med. Chem. 2012; 1
    • 1d Saghyan AS, Simonyan HM, Petrosyan SG, Geolchanyan AV, Roviello GN, Musumeci D, Roviello V. Amino Acids 2014; 46: 2325

      For reviews, see:
    • 2a Meyers AI. Aldrichimica Acta 1985; 18: 59
    • 2b Beak P, Zajdel WJ, Reitz DB. Chem. Rev. 1984; 84: 471

      For reviews see:
    • 3a Girard SA, Knauber TK, Li C.-J. Angew. Chem. Int. Ed. 2013; 52: 2
    • 3b Scheuermann CJ. Chem. Asian. J. 2010; 5: 436
    • 4a Huo C, Wang C, Wu M, Jia X, Xie H, Yuan Y. Adv. Synth. Catal. 2014; 356: 411
    • 4b Wu J, Song R, Wang Z, Li J. Angew. Chem. Int. Ed. 2012; 51: 3453
    • 5a Xie J, Huang Z. Angew. Chem. Int. Ed. 2010; 49: 10181
    • 5b Zhang G, Zhang Y, Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
    • 6a Peng H, Yu J, Jiang Y, Yang H, Cheng J. J. Org. Chem. 2014; 79: 9847
    • 6b Wei W, Song R, Li J. Adv. Synth. Catal. 2014; 356: 1703
    • 7a Yu H, Shen J. Org. Lett. 2014; 16: 3204
    • 7b Yu H, Shen J. RSC Adv. 2015; 5: 9815
    • 7c Xu W, Nachtsheim BJ. Org. Lett. 2015; 17: 1585
  • 8 Zhao L, Li CJ. Angew. Chem. Int. Ed. 2008; 47: 7075
  • 9 Li K, Tan G, Huang J, Song F, You J. Angew. Chem. Int. Ed. 2013; 52: 12942
  • 10 Typical Experimental Procedure the Synthesis of 3a To a mixture of 2a (0.2 mmol), FeCl3·6H2O (0.04 mmol), Cs2CO3 (0.10 mmol) in DCE (1.5 mL) were added malonic acid diethyl ester (0.40 mmol) and DTBP (0.40 mmol). The reaction vessel was capped and allowed to stir at 90 °C overnight. The volatiles were removed under reduced pressure, and the crude product was purified by flash chromatography on silica gel with (PE–EtOAc, 8:1) to give the product 3a (54 mg, 74%) as a yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 12.77 (s, 1 H), 8.74 (s, 1 H), 8.19 (d, J = 7.8 Hz, 1 H), 7.91 (td, J = 7.7, 1.5 Hz, 1 H), 7.54 (ddd, J = 7.5, 4.8, 0.8 Hz, 1 H), 4.43 (q, J = 7.2 Hz, 2 H), 4.37 (q, J = 7.1 Hz, 2 H), 4.28 (q, J = 7.1 Hz, 2 H), 1.40 (d, J = 7.2 Hz, 3 H), 1.35 (d, J = 6.7 Hz, 3 H), 1.32 (d, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 165.70, 164.20, 162.72, 162.28, 148.89, 147.87, 145.07, 137.53, 127.40, 123.35, 107.15, 62.49, 61.68, 14.01, 13.71. ESI-HRMS: m/z calcd for C17H20N2NaO7: 387.1170; found: 387.1168 [M + Na]+.