Synlett 2016; 27(07): 1027-1040
DOI: 10.1055/s-0035-1561954
account
© Georg Thieme Verlag Stuttgart · New York

Phosphoric Acid Based Heterodimers in Asymmetric Catalysis

Mattia R. Monaco
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany   Email: list@kofo.mpg.de
,
Gabriele Pupo
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany   Email: list@kofo.mpg.de
,
Benjamin List*
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany   Email: list@kofo.mpg.de
› Author Affiliations
Further Information

Publication History

Received: 25 February 2016

Accepted: 09 March 2016

Publication Date:
29 March 2016 (online)


These two authors contributed equally.

Abstract

Chiral phosphoric acid diesters arguably constitute the most exploited class of catalysts in asymmetric Brønsted acid catalysis. Despite being highly investigated for their acidic properties, these compounds display an amphoteric nature, which has instead been considerably overlooked. The potential of this dichotomous polarity has recently been disclosed and applied to the development of novel reaction modes in organocatalysis. In this account, we present our recent advances in this area, focusing on the establishment of heterodimeric interactions toward the nucleophilic activation of carboxylic acids, thiocarboxylic acids and ketones (via their enols) in asymmetric transformations.

1 Introduction

2 Discovery of Heterodimeric Self-Assemblies

3 Activation of Carboxylic Acids

3.1 The Enantioselective Carboxylysis of Aziridines

3.2 An Asymmetric Hydrolysis of Epoxides

4 Activation of Thiocarboxylic Acids

5 Enol Catalysis

5.1 Asymmetric Michael Addition

5.2 Asymmetric α-Amination

5.3 Asymmetric α-Allylation

6 Concluding Remarks

 
  • References

    • 2a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 2b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 2c See also: Hatano M, Moriyama K, Maki T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 3823
  • 3 Asymmetric Organocatalysis Workbench Edition . List B, Maruoka K. Thieme; Stuttgart: 2012
    • 6a Brønsted JN. Recl. Trav. Chim. Pays-Bas 1923; 42: 718
    • 6b Lowry TM. Chem. Ind. 1923; 42: 43
  • 7 Taft RW, Gurka D, Joris L, von R Schleyer P, Rakshy JW. J. Am. Chem. Soc. 1969; 91: 4801
  • 8 The concept of ‘frustrated Brønsted pair’ is introduced in analogy with the more established ‘frustrated Lewis pair’. Obviously however, the nature of the precluded interaction is different in the two cases: hydrogen bonding in the former and dative bonding in the latter.
    • 9a Monaco MR, Poladura B, Diaz de los Bernardos M, Leutzsch M, Goddard R, List B. Angew. Chem. Int. Ed. 2014; 53: 7063
    • 9b Monaco MR, Prévost S, List B. Angew. Chem. Int. Ed. 2014; 53: 8142
    • 9c Monaco MR, Prévost S, List B. J. Am. Chem. Soc. 2014; 136: 16982
    • 11a Peppard DF, Ferraro JR, Mason GW. J. Inorg. Nucl. Chem. 1957; 4: 371
    • 11b Peppard DF, Ferraro JR, Mason GW. J. Inorg. Nucl. Chem. 1958; 7: 231
  • 12 Sidgwick NV. Inorg. Chem. Ann. Rep. 1933; 30: 144
  • 13 The Chemistry of Carboxylic Acids and Esters . Patai S. Wiley-Interscience; Chichester: 1969
    • 14a Klussmann M, Ratjen L, Hoffmann S, Wakchaure V, Goddard R, List B. Synlett 2010; 2189

    • For similar observations on a different phosphoric acid catalyst, see:
    • 14b Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M. Org. Lett. 2005; 7: 3781
  • 15 Basic One- and Two-Dimensional NMR Spectroscopy. Friebolin H. Wiley-VCH; Weinheim: 1998
  • 16 Morris KF, Johnson Jr. CS. J. Am. Chem. Soc. 1992; 114: 3139
  • 17 Renny JS, Tomasevich LL, Tallmadge EH, Collum DB. Angew. Chem. Int. Ed. 2013; 52: 11998
  • 18 Fielding L. Tetrahedron 2000; 56: 6151
    • 19a DeFord J, Chu F, Anslyn EV. Tetrahedron Lett. 1996; 37: 1925
    • 19b Fujii Y, Sobue K, Tanaka M. J. Chem. Soc., Faraday Trans. 1 1978; 74: 1467
    • 19c Fujii Y, Yamada H, Mizuta M. J. Phys. Chem. 1988; 92: 6768
  • 20 A solvent effect of acetic acid in the dimerization of phosphoric acids has been reported, see ref. 11b.
  • 21 Kütt A, Leito I, Kaljurand I, Sooväli L, Vlasov MV, Yagupolskii LM, Koppel IA. J. Org. Chem. 2006; 71: 2829
    • 22a Akiyama T, Tamura Y, Itoh J, Morita H, Fuchibe KE. Synlett 2006; 141
    • 22b Rueping M, Azap C. Angew. Chem. Int. Ed. 2006; 45: 7832
    • 22c Rueping M, Sugiono E, Schoepke FR. Synlett 2007; 1441
    • 22d Li G, Antilla JC. Org. Lett. 2009; 11: 1075
    • 22e Zhao R, Shi L. ChemCatChem 2014; 6: 3309
  • 23 Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
  • 24 FDA’s policy statement for the development of new stereoisomeric drugs; Chirality; 1992, 4, 338.
    • 25a Bergmeier SC. Tetrahedron 2000; 56: 2561
    • 25b Birrell JA, Jacobsen EN. Org. Lett. 2013; 15: 2895
    • 25c Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835
    • 26a Aziridines and Epoxides in Organic Synthesis . Yudin AK. Wiley-VCH; Weinheim: 2006
    • 26b Hodgson DM, Humphreys PG, Hughes SP. Pure Appl. Chem. 2007; 79: 269
    • 27a Larson SE, Baso JC, Li G, Antilla JC. Org. Lett. 2009; 11: 5186
    • 27b Wu B, Parquette JR, RajanBabu TV. Science 2009; 326: 1662
    • 27c Wu B, Gallucci JC, Parquette JR, RajanBabu TV. Angew. Chem. Int. Ed. 2009; 48: 1126
    • 27d Ohmatsu K, Hamajima Y, Ooi T. J. Am. Chem. Soc. 2012; 134: 8794
    • 27e Mita T, Jacobsen EN. Synlett 2009; 1680
    • 27f Cockrell J, Wilhelmsen C, Rubin H, Martin A, Morgan JB. Angew. Chem. Int. Ed. 2012; 51: 9842
    • 28a Jat JL, Paudyal MP, Gao H, Xu Q.-L, Yousufuddin M, Devarajan D, Ess DH, Kürti L, Falck JR. Science 2014; 343: 61
    • 29a Furuta T, Torigai H, Osawa T, Iwamura M. J. Chem. Soc., Perkin Trans. 1 1993; 3139
    • 29b Kolovos M, Froussios C. Tetrahedron Lett. 1984; 35: 3909

    • For the instability of phosphoric acids toward epoxides see:
    • 29c Chan TH, Di Raddo P. Tetrahedron Lett. 1979; 22: 1947
    • 29d Di Raddo P, Chan TH. J. Chem. Soc., Chem. Commun. 1983; 16
    • 29e Meyer O, Ponaire S, Rohmer M, Grosdemange-Billiard C. Org. Lett. 2006; 8: 4347
  • 30 McCoull W, Davis FA. Synthesis 2000; 1347
  • 31 Biggs J, Chapman NB, Finch AF, Wray V. J. Chem. Soc. B 1971; 55
    • 32a Jakoby WB, Ziegler DM. J. Biol. Chem. 1990; 265: 20715
    • 32b Guengerich FP. Chem. Res. Toxicol. 2008; 21: 70
    • 32c 3rd ed. Biotransformations in Organic Chemistry . Faber K. Springer; Berlin: 1997
    • 33a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 33b Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. Blaser HU, Schmidt E. Wiley-VCH; Weinheim: 2004
    • 33c Kumar P, Gupta P. Synlett 2009; 1367
    • 34a Jacobsen EN, Kakiuchi F, Konsler RG, Larrow JF, Tokunaga M. Tetrahedron Lett. 1997; 38: 773
    • 34b Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
    • 34c Ready JM, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 1374
    • 34d Matsunaga S, Das J, Roels J, Vogl EM, Yamamoto N, Iida T, Yamaguchi K, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 2252
    • 34e Schneider C, Sreekanth AR, Mai E. Angew. Chem. Int. Ed. 2004; 43: 5691
    • 34f Berkessel A, Ertürk E. Adv. Synth. Catal. 2006; 348: 2619
    • 35a Arand M, Wagner H, Oesch F. J. Biol. Chem. 1996; 271: 4223
    • 35b Biswal BK, Morisseau C, Garen G, Cherney MM, Garen C, Niu C, Hammock BD, James MN. G. J. Mol. Biol. 2008; 381: 897
    • 35c Reetz MT, Torre C, Eipper A, Lohmer R, Hermes M, Brunner B, Maichele A, Bocola M, Arand M, Cronin A, Genzel Y, Archelas A, Furstoss R. Org. Lett. 2004; 6: 177
    • 35d Reetz MT, Bocola M, Wang L.-W, Sanchis J, Cronin A, Arand M, Zou J, Archelas A, Bottalla AL, Naworyta A, Mowbray SL. J. Am. Chem. Soc. 2009; 131: 7334
    • 36a Breslow R. J. Biol. Chem. 2009; 284: 1337
    • 36b Biomimetic Chemistry . Dolphin D, McKenna C, Murakami Y, Tabushi I. American Chemical Society; Washington: 1980
    • 36c Biomimetic Organic Synthesis . Poupon E, Nay B. Wiley-VCH; Weinheim: 2011
  • 37 Čorić I, List B. Nature 2012; 483: 315
    • 38a Jacobsen EN, Marko I, Mungall WS, Schrçder G, Sharpless KB. J. Am. Chem. Soc. 1988; 110: 1968
    • 38b Sharpless KB In Searching for New Reactivity from Les Prix Nobel. The Nobel Prizes 2001 . Frängsmyr T. Nobel Foundation; Stockholm: 2002
    • 39a Trudeau S, Morgan JB, Shrestha M, Morken JP. J. Org. Chem. 2005; 70: 9538
    • 39b Plietker B, Niggeman M. Org. Lett. 2003; 5: 3353
    • 39c Suzuki K, Oldenburg PD, Que Jr L. Angew. Chem. Int. Ed. 2008; 47: 1887
    • 39d Bhunnoo RA, Hu Y, Lainé DI, Brown RC. D. Angew. Chem. Int. Ed. 2002; 41: 3479
    • 39e de Boer JW, Browne WR, Harutyunyan SR, Bini L, Tiemersma-Wegman TD, Alsters PL, Hage R, Feringa BL. Chem. Commun. 2008; 3747
    • 39f For a review on osmium-free syn-dihydroxylation of alkenes, see: Bataille CJ. R, Donohoe TJ. Chem. Soc. Rev. 2011; 40: 114
    • 40a Blizzard TA, DiNinno F, Chen HY, Kim S, Wu JY, Chan W, Birzin ET, Yang YT, Pai L.-Y, Hayes EC, DaSilva CA, Roher SP, Scheffer JM, Hammond ML. Bioorg. Med. Chem. 2005; 15: 3912
    • 40b Prostaglandins, Leukotrienes and Lipoxins Biochemistry, Mechanism of Action and Clinical Applications. Bailey JM. Plenum Press; New York: 1985
    • 40c Nagao T, Sato M, Nakajima H, Kiyomoto A. Chem. Pharm. Bull. 1973; 21: 92
    • 40d Ono M, Takamura E, Shinozaki K, Tsumura T, Hamano T, Yagi Y, Tsubota K. Am. J. Ophtalmol. 2004; 138: 6

      For metal-based asymmetric thiolysis reactions, see:
    • 41a Yamashita H, Mukaiyama T. Chem. Lett. 1985; 1643
    • 41b Iida T, Yamamoto N, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1997; 119: 4783
    • 41c Wu MH, Jacobsen EN. J. Org. Chem. 1998; 63: 5252
    • 41d Wu J, Hou X.-L, Dai L.-X, Xia L.-J, Tang M.-H. Tetrahedron: Asymmetry 1998; 9: 3431
    • 41e Ogawa C, Wang N, Kobayashi S. Chem. Lett. 2007; 36: 34
    • 41f Nandakumar MV, Tschöp A, Krautscheid H, Schneider C. Chem. Commun. 2007; 2756

    • For related organocatalytic reactions, see:
    • 41g Wang Z, Law WK, Sun J. Org. Lett. 2013; 15: 5964
    • 41h Ingle G, Mormino MG, Antilla JC. Org. Lett. 2014; 16: 5548
  • 42 For a review article on organocascade methodologies, see: Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167

    • For selected studies on acid-catalyzed enolizations of ketones, see:
    • 43a Bartlett PD, Stauffer CH. J. Am. Chem. Soc. 1935; 57: 2580
    • 43b Zucker L, Hammett LP. J. Am. Chem Soc. 1939; 61: 2785
    • 43c Shechter H, Collis MJ, Dessy R, Okuzumi Y, Chen A. J. Am. Chem Soc. 1962; 84: 2905
    • 43d Rappe C, Sachs WH. J. Org. Chem. 1967; 32: 3700
    • 43e Lienhard GE, Wang T.-C. J. Am. Chem Soc. 1969; 91: 1146
    • 43f Chiang Y, Kresge AJ, Schepp NP. J. Am. Chem Soc. 1989; 111: 3977
    • 44a Gerlt JA, Kozarich JW. J. Am. Chem Soc. 1991; 113: 9667
    • 44b Gerlt JA, Gassman PG. J. Am. Chem Soc. 1991; 114: 5928
    • 45a Kaliopulos A, Mullen GP, Xue L, Mildvan AS. Biochemistry 1991; 30: 3169
    • 45b Choi G, Ha N.-C, Kim SW, Kim D.-H, Park S, Oh B.-H, Choi K.-Y. Biochemistry 2000; 39: 903
    • 45c Oh KS, Cha S.-S, Kim D.-H, Cho H.-S, Ha C.-C, Choi G, Lee JY, Tarakeshwar P, Son HS, Choi KY, Oh B.-H, Kim KS. Biochemistry 2000; 39: 13891
    • 45d Fried SD, Boxer SG. J. Phys. Chem. B 2012; 116: 690

    • For a review, see:
    • 45e Pollack RM. Bioorg. Chem. 2004; 32: 341

      For recent reviews/accounts on asymmetric enamine catalysis, see:
    • 46a List B. Synlett 2001; 1675
    • 46b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 46c List B. Acc. Chem. Res. 2004; 37: 548
    • 46d List B. Chem. Commun. 2006; 819
  • 47 For an early report on the activation of ketones by a chiral phosphoric acid for an aldol reaction, see: Pousse G, Le Cavelier F, Humphreys L, Rouden J, Blanchet J. Org. Lett. 2010; 12: 3582
  • 48 Kang JY, Carter RG. Org. Lett. 2012; 14: 3178
  • 49 Yang X, Toste FD. J. Am. Chem. Soc. 2015; 137: 3205
    • 50a Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis. Christoffers J, Baro A. Wiley-VCH Verlag GmbH&Co. KGaA; Weinheim: 2006
    • 50b Quasdorf KW, Overman LE. Nature 2014; 516: 181

    • For recent reviews on the asymmetric synthesis of quaternary stereocenters, see:
    • 50c Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1997; 36: 388
    • 50d Trost BM, Jiang C. Synthesis 2006; 3: 369

      For selected examples, see:
    • 51a Trost BM, Radinov R, Grenzer EM. J. Am. Chem. Soc. 1997; 119: 7879
    • 51b Trost BM, Schroeder GM. J. Am. Chem. Soc. 1991; 121: 6759
    • 51c Trost BM, Schroeder GM, Kristensen J. Angew.Chem. Int. Ed. 2002; 41: 3492

    • For a recent highlight on Tsuji–Trost allylic alkylations with ketone enolates, see:
    • 51d Braun M, Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952 and references therein

      For selected reports, see:
    • 52a Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
    • 52b Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 54: 1960
    • 52c Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
    • 52d Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
  • 53 Pupo G, Properzi R, List B. Angew. Chem. Int. Ed. accepted manuscript, DOI: DOI: 10.1002/anie.201601545.
  • 54 For an early report on the use of CO2 for the activation of allylic alcohols, see: Sakamoto M, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 1996; 69: 1065
  • 56 Zhang J, Lin S.-X, Cheng D.-J, Liu X.-Y, Tan B. J. Am. Chem. Soc. 2015; 137: 14039
    • 57a Wang Z, Chen Z, Sun J. Angew. Chem. Int. Ed. 2013; 52: 6685
    • 57b Wang Z, Sheong FK, Sung HH. Y, Williams ID, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 5895
  • 58 Yang X, Toste FD. Chem. Sci. 2016; 7: 2653
  • 59 Zhang L.-D, Zhong L.-R, Yang X.-L, Yao Z.-J. J. Org. Chem. 2016; 81: 1899