Synlett 2016; 27(10): 1521-1526
DOI: 10.1055/s-0035-1561937
letter
© Georg Thieme Verlag Stuttgart · New York

Stereocontrolled Synthesis of Planar Chiral Carba-Paracyclophanes via Modular Assembly

Sunna Jung
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   eMail: kohmori@chem.titech.ac.jp
,
Yoko Kitajima
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   eMail: kohmori@chem.titech.ac.jp
,
Yasuyuki Ueda
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   eMail: kohmori@chem.titech.ac.jp
,
Keisuke Suzuki
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   eMail: kohmori@chem.titech.ac.jp
,
Ken Ohmori*
Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan   eMail: kohmori@chem.titech.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 26. Januar 2016

Accepted after revision: 17. Februar 2016

Publikationsdatum:
18. März 2016 (online)


Abstract

Described herein is a flexible modular approach to planar chiral carba-paracyclophanes via the stepwise assembly of two distinct side arms and the aromatic core followed by ring-closing olefin metathesis. Planar chirality is induced by one chiral sulfinyl group by forming a hydrogen bond to the phenol in the aromatic unit.

Supporting Information

 
  • References and Notes

  • 3 An elegant work for conformational and stereocontrolled synthesis of cyclophane and its application for the total synthesis of logithorone A, see: Layton ME, Morales CA, Shair MD. J. Am. Chem. Soc. 2002; 124: 773
  • 5 Mori K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 5638
  • 7 After workup of the reaction, the crude material of 5 could also be employed for the following coupling reaction with 10, giving 12 in 88% overall yield from 4.
  • 8 The five-step protocol with poor reproducibility as well as expensive reagents and materials are serious shortcomings.
  • 9 Mikolajczyk M, Midura W, Grzejszczak S, Zatorski A, Chefczynska A. J. Org. Chem. 1978; 43: 473
  • 10 Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
  • 11 Claus RE, Schreiber SL. Org. Synth. 1986; 64: 150
  • 12 For a further scope of this one-pot HWE reaction with 6, manuscript in preparation.
  • 13 The reaction with Pd(PPh3)4 in DMSO resulted in poor yield. In use of K3PO4 as a base, the reaction provided only the homocoupling product in 24% yield.
  • 14 Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
  • 15 For the syntheses of 22, 27, and 28, see the Supporting Information.
  • 17 See the Supporting Information.
  • 18 Crystallographic data for compound 29·CHCl3 have been deposited with the accession number CCDC 1415431, and can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures.
  • 19 Ring-closing olefin metathesis of 26 only gave undesired product when second-generation Hoveyda–Grubbs catalyst was used. See the Supporting Information for the details.
  • 20 Hoye TR, Jeffrey CS, Tennakoon MA, Wang J, Zhao H. J. Am. Chem. Soc. 2004; 126: 10210
  • 21 Generation of the cyclopentene was observed with the mixture of 26 and first-generation Grubbs catalyst (10 mol%) in CDCl3, which was increased when the stoichiometric first-generation Grubbs catalyst (1.0 equiv) was used.
  • 22 For the synthesis of 31, see the Supporting Information.
  • 23 Stereochemistry of the major isomer was confirmed by a 1H NMR spectroscopy, observing a large coupling constant of vinylic protons (15.2 Hz).
  • 24 Typical Experimental Procedure for the Ring-Closing Olefin Metathesis To a solution of cyclization precursor 31 (0.05 mmol) in CH2Cl2 (0.003 M) was added Grubbs I catalyst (10 mol%) at room temperature. The reaction mixture was refluxed at 40 °C and stirred for 1 h. After cooling to room temperature, Florisil® (10 wt% of catalyst) was added. After stirring at this temperature for 1 h, the reaction mixture was filtered through a Celite® pad (washed with CH2Cl2). The filtrate was concentrated in vacuo, the residue was purified by PTLC (silica gel, hexane–EtOAc = 1:1) to afford cyclic product 32 (62%, E/Z = 21:1) as a white solid. Compound (E)-32: Rf = 0.34 (hexane–Et2O = 1:1); mp 66–69 °C. 1H NMR (600 MHz, CDCl3): δ = 0.96–1.07 (m, 2 H), 1.08–1.17 (m, 2 H), 1.27–1.33 (m, 1 H), 1.43–1.51 (m, 2 H), 1.61–1.68 (m, 1 H), 1.74–1.86 (m, 4 H), 1.95–1.99 (m, 1 H), 2.01–2.08 (m, 1 H), 2.31 (ddd, 1 H, J = 14.0, 10.0, 4.3 Hz), 2.35 (s, 3 H), 2.83 (ddd, 1 H, J = 13.6, 6.6, 4.2 Hz), 4.07 (s, 1 H, OH), 4.91 (ddd, 1 H, J = 15.2, 7.2, 7.2 Hz), 5.02 (dt, 1 H, J = 15.2, 7.2 Hz), 5.72 (s, 1 H), 6.67 (s, 1 H), 6.89 (dd, 1 H, J = 9.3, 6.5 Hz), 7.20 (d, 2 H, J = 8.1 Hz), 7.35 (d, 2 H, J = 8.1 Hz), 8.99 (s, 1 H, OH). 13C NMR (150 MHz, CDCl3): δ = 21.4, 25.5, 27.3, 27.7, 27.9, 28.3, 30.1, 31.3, 31.6, 117.2, 117.8, 120.1, 124.5, 129.4, 129.7, 131.4, 131.5, 137.0, 141.5, 144.8, 146.1, 146.5, 149.1. IR (neat): 3301 (br), 3017, 2925, 2855, 2360, 2342, 1629, 1595, 1507, 1493, 1455, 1381, 1249, 1194, 1083, 975, 889, 808, 756 cm–1. [α]D 22 +89.6 (c 0.580, CHCl3). ESI-HRMS: m/z calcd for C25H31O5S [M + H]+: 443.1887; found: 443.1865.