Subscribe to RSS
DOI: 10.1055/s-0035-1561647
Heterogeneous Catalytic Reductive Amination of Carbonyl Compounds with Ni-Al Alloy in Water as Solvent and Hydrogen Source
Publication History
Received: 07 April 2016
Accepted after revision: 25 April 2016
Publication Date:
07 June 2016 (online)
‡ These authors contributed equally to the work.
Abstract
The heterogeneous catalytic reductive amination of carbonyl compounds has been achieved by reactions of ammonium hydroxide and various amines with ketones and aldehydes. The process is based on the application of Raney type Ni-Al alloy in an aqueous medium. The reaction of the carbonyl compounds with the amine provided the corresponding Schiff bases that immediately underwent a reduction to provide primary and secondary amines as products. The controlled reaction of the Al content of the alloy with the solvent water generates hydrogen, and the in situ formed Raney Ni® serves as a hydrogenation catalyst. The method is a simple and efficient way of preparing a broad variety of primary and secondary amines.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561647.
- Supporting Information
-
References
- 1a Hutchins RO, Hutchins RK In Comprehensive Organic Synthesis . Vol. 8. Trost MB, Fleming I. Pergamon Press; Oxford: 1991
- 1b Hudlicky M. Reductions in Organic Chemistry . 2nd ed. American Chemical Society; Washington DC (USA): 1996
- 1c Smith MB. Organic Synthesis . 3rd ed. Academic Press; New York: 2011. Chap. 4, 347-491
- 2a Tarasevich VA, Kozlov NG. Russ. Chem. Rev. 1999; 68: 55
- 2b Gomez S, Peters JA, Maschmeyer T. Adv. Synth. Catal. 2002; 344: 1037
- 2c Baxter EW, Reitz AB. Org. React. 2002; 59: 1
- 2d Tararov VI, Kadyrov R, Riermeier TH, Dingerdissen U, Boerner A. Org. Prep. Proced. Int. 2004; 36: 99
- 2e Tararov VI, Boerner A. Synlett 2005; 203
- 2f Abel-Magid AF, Mehrman SJ. Org. Process Res. Dev. 2006; 10: 971
- 2g Roszkowski P, Czarnocki Z. Mini-Rev. Org. Chem. 2007; 4: 190
- 3a Handbook of Green Chemistry and Technology . Clark J, Macquarrie D. Blackwell; Oxford: 2002
- 3b Mikami K. Green Reaction Media in Organic Synthesis. Blackwell; Oxford: 2005
- 3c Chaturvedi D, Barua NC. Curr. Org. Synth. 2012; 9: 1 ; and papers published in this special issue
- 4a Sabatier P, Senderens JB. Compt. Rend. 1899; 128: 1173
- 4b Sabatier P. La Catalyse en Chimie Organique 1913, Catalysis in Organic Chemistry (Translated by Reid E. E.). Van Norstrand; Princeton NJ: 1922: 923
- 5a Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley; New York: 2001
- 5b Blaser H.-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv. Synth. Catal. 2003; 345: 103
- 5c Kulkarni A, Török B. Curr. Org. Synth. 2011; 8: 187
- 6a Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
- 6b Girard C, Kagan HB. Angew. Chem. Int. Ed. 1998; 37: 2922
- 6c Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
- 6d Blaser H.-U, Pugin B, Spindler F, Thommen M. Acc. Chem. Res. 2007; 40: 1240
- 7a Press RJ, Santhanam KS. V, Miri MJ, Bailey AV, Takacs GA. Introduction to Hydrogen Technology . Wiley; Hoboken: 2009. Chap. 4.1, 195-210
- 7b http://energy.gov/eere/ fuelcells/hydrogen-production-natural-gas-reforming (accessed 03/23/2016).
- 8a Kulkarni A, Török B. Green Chem. 2010; 12: 875
- 8b Bag S, Dasgupta S, Török B. Curr. Org. Synth. 2011; 8: 237
- 8c Daştan A, Kulkarni A, Török B. Green Chem. 2012; 14: 17
- 8d Borkin DA, Puscau M, Carlson A, Wheeler KA, Török B, Dembinski R. Org. Biomol. Chem. 2012; 10: 4505
- 9 Tomin A, Lazarev A, Bere MP, Redjeb H, Török B. Org. Biomol. Chem. 2012; 10: 7321
- 10 Li C.-J. Acc. Chem. Res. 2010; 43: 581
- 11 Mhadgut SC, Palaniappan K, Thimmaiah M, Hackney SA, Török B, Liu J. Chem. Commun. 2005; 3207
- 12a Keefer LK, Lunn G. Chem. Rev. 1989; 89: 459
- 12b Cho H, Schäfer C, Török B. Curr. Org. Synth. 2016; 13: 255
- 13a Tashiro M, Fukata G. J. Org. Chem. 1977; 42: 835
- 13b Tashiro M, Mataka S, Nakamura H, Nakayama K. J. Chem. Soc., Perkin Trans. 1 1988; 179
- 13c Fukata G, Itoh T, Mataka S, Tashiro M. J. Chem. Soc., Perkin Trans. 1 1988; 327
- 13d Tsukinoki T, Kakinami T, Iida Y, Ueno M, Ueno Y, Mashimo T, Tsuzuki H, Tashiro M. J. Chem. Soc., Chem. Commun. 1995; 209
- 13e Ishimoto K, Mitoma Y, Nagashima S, Tashiro H, Prakash GK. S, Olah GA, Tashiro M. Chem. Commun. 2003; 514
- 13f Miyazawa A, Tashiro M, Prakash GK. S, Olah GA. Bull. Chem. Soc. Jpn. 2006; 79: 791
- 13g Liu G.-B, Zhao H.-Y, Zhu JD, He H.-J, Yang H-J, Thiemann T, Tashiro H, Tashiro M. Synth. Commun. 2008; 38: 1651
- 13h Liu G.-B, Tashiro M, Thiemann T. Tetrahedron 2009; 65: 2497
- 14 Cho H, Török F, Török B. Org. Biomol. Chem. 2013; 11: 1209
- 15a Thimmegowda N, Park C, Shwetha B, Sakchaisri K, Liu K, Hwang J, Lee S, Jeong S, Soung N, Jang J, Ryoo I, Ahn J, Erikson R, Kim B. Chem. Biol. Drug Des. 2015; 85: 638
- 15b Helgren T, Sciotti R, Lee P, Duffy S, Avery V, Igbinoba O, Akoto M, Hagen T. Bioorg. Med. Chem. Lett. 2015; 25: 327
- 16a Palmer B, Sutherland H, Blaser A, Kmentova I, Franzblau S, Wan B, Wang Y, Ma Z, Denny W, Thompson A. J. Med. Chem. 2015; 58: 3036
- 16b Mendoza-Martinez C, Correa-Basurto J, Nieto-Meneses R, Marquez-Navarro A, Aguilar-Suarez R, Montero-Cortes M, Nogueda-Torres B, Suarez-Contreras E, Galindo-Sevilla N, Rojas-Rojas A, Rodriguez-Lezama A, Hernandez-Luis F. Eur. J. Med. Chem. 2015; 96: 296
- 17a Mason TJ, Lorimer JP. Sonochemistry 1988
- 17b Luche JL. Synthetic Organic Sonochemistry . Plenum Press; New York: 1998
- 17c Suslick KS In Handbook of Heterogeneous Catalysis . Vol. 3. Ertl G, Knözinger H, Weitkamp J. Wiley-VCH; Weinheim: 1997: 1350
- 17d Török B, Balázsik K, Felföldi K, Bartók M. Ultrason. Sonochem. 2001; 8: 191
- 17e Varma RS. Green Chem. Lett. Rev. 2007; 1: 37
- 18a Török B, Felföldi K, Szakonyi G, Balázsik K, Bartók M. Catal. Lett. 1998; 52: 81
- 18b Török B, Balázsik K, Szöllösi G, Felföldi K, Bartók M. Chirality 1999; 11: 470
- 18c Mhadgut SC, Bucsi I, Török M, Török B. Chem. Commun. 2004; 984
- 19a Cho H. Ph.D. Thesis . University of Massachusetts Boston; USA: 2015
- 19b Cho, H.; Schäfer, C.; Kokel, A.; Grau, S.; Török, B. Manuscript in preparation.
- 20a Miriyala B, Battacharyya S, Williamson JS. Tetrahedron 2004; 60: 1463
- 20b Ramachandran PV, Gagare PD, Skavuyi K, Clark P. Tetrahedron Lett. 2010; 51: 3167
- 21a Nişancı B, Ganjehyan K, Metin Ö, Daştan A, Török B. J. Mol. Catal. A: Chem. 2015; 409: 191
- 21b Das S, Addis D, Junge K, Beller M. Chem. Eur. J. 2011; 17: 12186
- 21c Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JM. Chem. Commun. 2010; 46: 1541
- 22a Bagal DB, Watile RA, Khedkar MV, Dhake KP, Bhanage BM. Catal. Sci. Tech. 2012; 2: 354
- 22b Lee O.-Y, Law KL, Yang D. Org. Lett. 2009; 11: 3302
- 22c Lorentz-Petersen LL. R, Jensen P, Madsen R. Synthesis 2009; 4110
- 22d Sreedhar B, Reddy PS, Devi DK. J. Org. Chem. 2009; 74: 8806
- 22e Kwon MS, Kim SP, Bosco W, Chidrala RK, Park J. J. Org. Chem. 2009; 74: 2877
- 22f Anil Kumar UR, Basavaiah K, Tharpa K, Vinay KB. Synth. Commun. 2009; 39: 1332
- 22g Tsai C.-Y, Sung R, Zhuang BR, Sung K. Tetrahedron 2010; 66: 6869
- 22h Xie J, Zhu X, Huang M, Meng F, Chen W, Wan Y. Eur. J. Org. Chem. 2010; 3219
- 22i Zhao Y, Foo SW, Saito S. Angew. Chem. Int. Ed. 2011; 50: 3006
- 22j Ohta H, Yujama Y, Uozumi Y, Yamada YM. A. Org. Lett. 2011; 13: 3892