Synlett 2016; 27(08): 1262-1268
DOI: 10.1055/s-0035-1561417
letter
© Georg Thieme Verlag Stuttgart · New York

First Total Synthesis of Dermocanarin 2

Satoru Yamaguchi
a   Department of Chemistry, Tokyo Institute of Technology, 2- 12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Email: ksuzuki@chem.titech.ac.jp
,
Nobuyuki Takahashi
a   Department of Chemistry, Tokyo Institute of Technology, 2- 12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Email: ksuzuki@chem.titech.ac.jp
,
Daisuke Yuyama
b   School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan   Email: tmatsumo@toyaku.ac.jp
,
Kayo Sakamoto
b   School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan   Email: tmatsumo@toyaku.ac.jp
,
Keisuke Suzuki*
a   Department of Chemistry, Tokyo Institute of Technology, 2- 12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan   Email: ksuzuki@chem.titech.ac.jp
,
Takashi Matsumoto*
b   School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan   Email: tmatsumo@toyaku.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 23 January 2016

Accepted after revision: 11 February 2016

Publication Date:
24 March 2016 (online)


Abstract

The first total synthesis of dermocanarin 2 is described. The synthesis features the construction of the anthraquinone and naphthoquinone frameworks through annulation reactions onto an axially chiral biphenyl intermediate, obtained by an enzyme-catalyzed enantioselective desymmetrization of a σ-symmetric precursor, followed by a stereoselective aldol reaction to construct the stereogenic center in the side chain.

Supporting Information

 
  • References and Notes

  • 1 Bringmann G, Günther C, Ochse M, Schupp O, Tasler S. Prog. Chem. Org. Nat. Prod. 2001; 82: 1

    • For recent reviews, see:
    • 2a Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 2b Zhang D, Wang Q. Coord. Chem. Rev. 2015; 286: 1
    • 2c Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 2d Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 11644
    • 2e Smith JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
    • 2f Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131
    • 3a Gill M, Giménez A. Tetrahedron Lett. 1990; 31: 3505
    • 3b Gill M, Giménez A. J. Chem. Soc., Perkin Trans. 1 1995; 645
    • 3c Gill M, Giménez A, Jhingran AG, Milanovic NM, Palfreyman AR. J. Chem. Soc., Perkin Trans. 1 1998; 3431
    • 3d Elsworth C, Gill M, Milanovic NM. Aust. J. Chem. 1999; 52: 867
    • 3e Buchanan MS, Gill M, Phonh-Axa S, Yu J. Aust. J. Chem. 1999; 52: 875
    • 3f Gill M, Millar PM, Phonh-Axa S, Raudies E, White JM, Yu J. Aust. J. Chem. 1999; 52: 881
    • 4a Matsumoto T, Konegawa T, Nakamura T, Suzuki K. Synlett 2002; 122
    • 4b Okuyama K, Shingubara K, Tsujiyama S, Suzuki K, Matsumoto T. Synlett 2009; 941
  • 5 For our related work, see: Takahashi N, Kanayama T, Okuyama K, Kataoka H, Fukaya H, Suzuki K, Matsumoto T. Chem. Asian J. 2011; 6: 1752
  • 6 The numbering system used in this paper corresponds to that of dermocanarin 2.
    • 7a Liebeskind LS, Iyer S, Jewell CF. Jr. J. Org. Chem. 1986; 51: 3065
    • 7b Moore HW, Yerxa BR. Chemtracts 1992; 5: 273
    • 7c Suzuki T, Hamura T, Suzuki K. Angew. Chem. Int. Ed. 2008; 47: 2248

    • For a review, see:
    • 7d Flores-Gaspar A, Martion R. Synthesis 2013; 563
  • 8 Savard J, Brassard P. Tetrahedron 1984; 40: 3455
  • 9 Aryl bromide 2 was prepared from the known phenol 34 (see ref. 10), as shown in Scheme 6:
  • 10 Hu Y, Li C, Kulkarni BA, Strobel G, Lobkovsky E, Torczynski RM, Porco JA. Jr. Org. Lett. 2001; 3: 1649
    • 11a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 11b Suzuki A. J. Organomet. Chem. 1999; 576: 147
  • 12 Appendino G, Daddaro N, Minassi A, Moriello AS, De Petrocellis L, Di Marzo V. J. Med. Chem. 2005; 48: 4663
  • 13 Earnshaw C, Wallis CJ, Warren S. J. Chem. Soc., Perkin Trans. 1 1979; 3099
  • 14 Stadlbauer S, Ohmori K, Hattori F, Suzuki K. Chem. Commun. 2012; 48: 8425
  • 15 In addition to ROL and PPL, we tested Pseudomonas fluorescence lipase (Amano, lipase AK), pig liver esterase (Sigma), Pseudomonas cepacia lipase (Amano, lipase PS), Candida rugosa lipase (Amano, lipase AY), Aspergillus niger lipase (Amano, lipase AS), Candida antarctica lipase (Roche Diagnostics, Chirazyme L-2), Mucor javanicus lipase (Amano, Lipase M), Burkholderia cepacia lipase (Amano, Lipase PS), Penicillium camembertii lipase (Amano, Lipase G), and a lipase from Alcaligenes sp. (Meito).
  • 16 Heptane, (i-Pr)2O, Et2O, CH2Cl2, toluene, acetone, DMSO, THF, 1,4-dioxane, MeCN, and t-BuOH were tested.
  • 17 CCDC 1445353 (10), 1445412 [(R*,aR*)-35], 1445413 [(S*,aR*)-36], 1445869 (17), and 1445886 (18) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Two of these structures are shown in Figure 3.
  • 18 The lithium chelate in Figure 2 was drawn on the basis of the DFT-optimized geometries of the model compounds. See the Supporting Information.
  • 19 Although direct separation of diastereomers (R,aS)-13e and (S,aS)-14e was difficult, conversion into the corresponding lactones 35 and 36, accomplished quantitatively by Shiina lactonization (Scheme 7), permitted easy separation by silica-gel chromatography. Transesterification of lactone 35 with EtOH and K2CO3 regenerated (R,aS)-13e in a diastereomerically pure form. Furthermore, the stereochemistry at C3′ could be determined by means of an X-ray crystal structure analysis of (±)-35. A racemic sample of 35 gave a single crystal (colorless plate), suitable for X-ray crystal structure analysis, on crystallization from hexane–CH2Cl2, whereas optically pure 35 and 13e did not.
  • 20 Janssen DE, Wilson CV. Org. Synth. Coll. Vol. IV 1963: 547
  • 21 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333

    • For the synthesis of ketone 19, see the Supporting Information; see also:
    • 22a Hamura T, Hosoya T, Yamaguchi H, Kuriyama Y, Tanabe M, Miyamoto M, Yasui Y, Matsumoto T, Suzuki K. Helv. Chim. Acta 2002; 85: 3589
    • 22b Tsujiyama S, Suzuki K. Org. Synth. 2007; 84: 272
  • 23 The reaction in the absence of BHT was less successful, giving anthraquinone 22 and 23 in 54% and 5% yields, respectively, together with many unidentified byproducts.
  • 24 Ali MH, Niedbalski M, Bohnert G, Bryant D. Synth. Commun. 2006; 36: 1751
  • 25 Attempts to oxidize of 24 and model compounds 37ac (Figure 4) under various conditions led to intractable mixtures of products, whereas the reaction of 38 with CAN/SiO2 in wet CH2Cl2 gave the corresponding benzoquinone in 99% yield.
  • 26 Gras J.-L, Pellissier H, Nouguier R. J. Org. Chem. 1989; 54: 5675
    • 27a Frigerio M, Santagostino M. Tetrahedron Lett. 1994; 35: 8019
    • 27b Frigerio M, Santagostino M, Sputore S. J. Org. Chem. 1999; 64: 4537
    • 28a Lindgren BO, Nilsson T. Acta Chem. Scand. 1973; 27: 888
    • 28b Kraus GA, Taschner MJ. J. Org. Chem. 1980; 45: 1175
    • 28c Kraus GA, Roth B. J. Org. Chem. 1980; 45: 4825
  • 30 Dermocanarin 2 (1); Experimental Procedure for the Final Synthetic Step NaH2PO4·2H2O (32.7 mg, 210 μmol) and NaClO2 (13.0 mg, 175 μmol) were added to a solution of aldehyde 30 (23.7 mg, 39.4 μmol) and 2-methylbut-2-ene (167 mg, 2.38 mmol) in t-BuOH (4.0 mL) and H2O (1.0 mL) at r.t., and the mixture was stirred for 15 min. The mixture was then poured into brine at 0 °C, and the products were extracted with CH2Cl2. The combined organic extracts were washed with brine, dried (Na2SO4), filtered, and concentrated. The crude product was dissolved in CH2Cl2 (6.0 mL) and added to a solution of 2-methyl-6-nitrobenzoic anhydride (33; 29.1 mg, 84.6 μmol) and DMAP (19.8 mg, 162 μmol) in CH2Cl2 (1.0 mL) at 0 °C. The mixture was then stirred for 15 min before the reaction was stopped by adding 0.1 M phosphate buffer (pH 7). The products were extracted with CH2Cl2, and the combined organic extracts were washed sequentially with 1 M aq HCl, brine, sat. aq NaHCO3, and brine, then dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified by preparative TLC [CHCl3–MeOH (95:5)] to give dermocanarin 2 (1) as a yellow solid; yield: 16.6 mg (70%, 2 steps). Reprecipitation from hexane–CH2Cl2 followed by crystallization (EtOH, –20 °C) gave a yellow powder; mp 227–230 °C (dec.); Rf = 0.63 (CHCl3–MeOH, 95:5); [α]D 22 +2.1 × 102 (c 0.50, CHCl3); IR (ATR): 3505, 1774, 1657, 1632, 1582 cm–1; HRMS (ESI-TOF): m/z calcd [M + H]+ for C33H27O11: 599.1553; found: 599.1563. The 1H NMR (Table 3) and 13C NMR data (Table 4) for synthetic and natural dermocanarin 2 (1) are listed.