Synlett 2016; 27(09): 1363-1366
DOI: 10.1055/s-0035-1561391
letter
© Georg Thieme Verlag Stuttgart · New York

A One-Pot Tandem Approach for the Synthesis of 5-(Het)aryloxazoles from Substituted (Het)aryl Methyl Alcohols and Benzyl Bromides

Koravangala S. Vinay Kumar
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
,
Toreshettahally R. Swaroop
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
,
Narasimhamurthy Rajeev
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
,
Ajjampura C. Vinayaka
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
,
Gejjalagere S. Lingaraju
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
,
Kanchugarakoppal S. Rangappa*
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
,
Maralinganadoddi P. Sadashiva*
Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India   Email: mpsadashiva@gmail.com   Email: rangappaks@gmail.com
› Author Affiliations
Further Information

Publication History

Received 03 October 2015

Accepted after revision: 20 January 2016

Publication Date:
01 March 2016 (online)


Abstract

A new modified van Leusen strategy has been developed for the synthesis of biologically significant 5-substituted oxazoles by the reaction of (het)aryl methyl alcohols or benzyl bromides as precursors with tosylmethylisocyanide (TosMIC) under basic conditions. This method is efficient, takes place under mild reaction conditions, and is tolerant of various functional groups with high yield.

Supporting Information

 
  • References and Notes

    • 1a Jin Z. Nat. Prod. Rep. 2009; 26: 382
    • 1b Jin Z. Nat. Prod. Rep. 2011; 28: 1143
    • 2a Cocito C. Microbiol. Rev. 1979; 43: 145
    • 2b Moura KC. G, Carneiro PF, Pinto MC. F. R, da Silva JA, Malta VR. S, de Simone CA, Dias GG, Jardim GA. M, Cantos J, Coelho TS, Almeida da Silva PE, da Silva EN. Jr. Bioorg. Med. Chem. 2012; 20: 6482
    • 3a Antonio J, Molinski TF. J. Nat. Prod. 1993; 56: 54
    • 3b Ryu CK, Lee RY, Kim NY, Kim YH, Song AL. Bioorg. Med. Chem. Lett. 2009; 19: 5924
    • 4a Wipf P. Chem. Rev. 1995; 95: 2115
    • 4b Riego E, Hermandez D, Albericio F, Alvarez M. Synthesis 2005; 1907
    • 4c Liu XH, Lv PC, Xue JY, Song BA, Zhu HL. Eur. J. Med. Chem. 2009; 44: 3930
    • 4d Kumar D, Kumar NM, Sundaraee S, Johnson EO, Shah K. Eur. J. Med. Chem. 2010; 45: 1244
    • 5a Cuny G, Gamez-Montano R, Zhu J. Tetrhedron 2004; 60: 4879
    • 5b Bertram A, Maulucci N, New OM, Nor SM. M, Pattenden G. Org. Biomol. Chem. 2007; 5: 1541
    • 5c Joannesse C, Johnston CP, Concellon C, Simel C, Philp D, Smith AB. Angew. Chem. 2009; 121: 9076
    • 5d Dhara MG, Banerjee S. Prog. Polym. Sci. 2010; 35: 1022
    • 5e Hussein MA, Asiri AM, Aly KI. Int. J. Polym. Mater. 2012; 61: 154
    • 6a Zhong CL, Tang BY, Yin P, Chen Y, He L. J. Org. Chem. 2012; 77: 4271
    • 6b Oxazoles: Synthesis, Reactions, and Spectroscopy. In The Chemistry of Heterocyclic Compounds, Palmer D. C. Wiley; Hoboken: 2004. Parts A and B, Vol. 60
    • 7a Robinson R. J. Chem. Soc. 1909; 95: 2167
    • 7b Gabriel S. Ber. Dtsch. Chem. Ges. 1910; 43: 1283
    • 7c Shaw AY, Xu Z, Hulme C. Tetrahedron Lett. 2012; 53: 1998
    • 8a Moody CJ, Doyle KJ. Prog. Heterocycl. Chem. 1997; 9: 1
    • 8b Linder J, Garner TP, Williams HE. L, Searle MS, Moody CJ. J. Am. Chem. Soc. 2011; 133: 1044
    • 8c Xu X, Zavalij PY, Hu W, Doyle MP. Chem. Commun. 2012; 48: 11522
  • 9 Pan YM, Zheng FJ, Li HX, Zhan ZP. J. Org. Chem. 2009; 74: 3148
  • 10 Jiang H, Huang H, Cao H, Qi C. Org. Lett. 2010; 12: 5561
  • 11 Wan C, Gao L, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
  • 12 Ritson DJ, Spiteri C, Moses JE. J. Org. Chem. 2011; 76: 3519
    • 13a He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 13b Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
  • 14 Xu Z, Zhang C, Jiao N. Angew Chem. 2012; 124: 11529
    • 15a Bellina F, Lessi M, Manzini C. Eur. J. Org. Chem. 2013; 5621
    • 15b Besselierre F, Mahuteau-Betzer F, Grierson DS, Piguel S. J. Org. Chem. 2008; 73: 3278
    • 15c Primas N, Bouillon A, Lancelot JC, Rault S. Tetrahedron 2009; 65: 6348
    • 15d Ding Z, Yoshikai N. Org. Lett. 2010; 12: 4180
    • 15e Odani R, Hirano K, Sotoh T, Miura M. J. Org. Chem. 2015; 80: 2384
    • 16a van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 13: 2369
    • 16b Saikachi H, Kitagawa T, Sasaki H, van Leusen AM. Chem. Pharm. Bull. 1979; 23: 793
    • 16c Sagud I, Faraguna F, Marinic Z, Sindler-Kulyk M. J. Org. Chem. 2011; 76: 2904
  • 17 Kulakarni BA, Ganesan A. Tetrahedron Lett. 1999; 40: 5633
  • 18 Kulakarni BA, Ganesan A. Tetrahedron Lett. 1999; 40: 5637
  • 19 Addie MS, Taylor RJ. K. J. Chem. Soc., Perkin Trans. 1 2000; 527
  • 20 Wu B, Wen J, Zhang J, Li J, Xiang YZ, Yu XQ. Synlett 2009; 500
  • 21 Katritzky AR, Chen YX, Yannakopoulou K, Lue P. Tetrahedron Lett. 1989; 30: 6657
  • 22 Molander GA, Febo-Ayala W, Jean-Gerard L. Org. Lett. 2009; 11: 3830
  • 23 Motoyama Y, Kawakami H, Shimozono K, Katsuyuki A, Nishiyama H. J. Org. Chem. 2002; 21: 3408
    • 24a Moliner FD, Hulme C. Org. Lett. 2012; 14: 1354
    • 24b Moliner FD, Hulme C. Tetrahedron Lett. 2012; 53: 5787
    • 25a Lingaraju GS, Swaroop TR, Vinayaka AC, Sharath Kumar KS, Sadashiva MP, Rangappa KS. Synthesis 2012; 44: 1373
    • 25b Swaroop TR, Roopashree R, Ila H, Rangappa KS. Tetrahedron Lett. 2013; 54: 147
    • 25c Swaroop TR, Ila H, Rangappa KS. Tetrahedron Lett. 2013; 54: 5288
    • 25d Sharath Kumar KS, Swaroop TR, Harsha KB, Narasimhamurthy KH, Rangappa KS. Tetrahedron Lett. 2012; 53: 5619
    • 25e Vinayaka AC, Sadashiva MP, Wu X, Biryukov SS, Stoute JA, Rangappa KS, Gowda DC. Org. Biomol. Chem. 2014; 12: 8555
    • 25f Bommegowda YK, Lingaraju GS, Thamas S, Vinay Kumar KS, Pradeepa Kumara CS, Rangappa KS, Sadashiva MP. Tetrahedron Lett. 2013; 54: 2693
  • 26 To a solution of benzyl alcohol (4.6 mmol) in DMSO (2 mL), T3P® (5.5 mmol, 50% solution in EtOAc) was added at 0 °C followed by Et3N (9.2 mmol) under nitrogen atmosphere. The mixture was stirred at r.t. for 1.5 h. After completion of the reaction (monitored by TLC), KOH (69.0–92.0 mmol) in H2O–EtOH mixture (3 mL, 1:1, v/v) was added dropwise to the reaction mixture at 0 °C and stirred for 5 min followed by TosMIC (5.0 mmol) addition. The reaction was monitored by TLC and evaporated the EtOH from reaction mixture under reduced pressure, followed by dilution with EtOAc (2 × 25 mL). The organic layer was washed with H2O (2 × 20 mL) and brine solution (2 × 20 mL). Then, the organic layer was dried over anhydrous Na2SO4 and concentrated in vacuum to afford crude product. The crude was purified by column chromatography over silica gel (60–120 mesh) using hexane–EtOAc mixture as eluent (8:2) and obtained 3a (83% yield) as pale yellow solid; mp 37–39 °C. FTIR: 3013, 3006, 2988, 2251, 1661, 1052, 1024, 1005, 658 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.89 (s, 1 H, ArH), 7.65-7.62 (m, 2 H, ArH), 7.43–7.38 (m, 2 H, ArH), 7.34–7.30 (m, 2 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 151.5, 150.3, 128.9, 128.6, 127.7, 124.3, 121.4. HRMS: m/z calcd: 145.158; found: 146.703 [M + H]+. Anal. Calcd for C9H7NO: C, 74.47; H, 4.86; N, 9.65; O, 11.02. Found: C, 74.48; H, 4.89; N, 9.66.
  • 27 CCDC 1429231 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 28 The mixture of benzyl bromide (2.9 mmol) and NaHCO3 (4.3 mmol) was stirred for 5 min followed by the addition of DMSO (1 mL) at r.t., and the reaction was monitored by TLC, followed by dropwise addition of KOH (4.3–5.8 mmol) in H2O–EtOH mixture (3 mL, 1:1, v/v) at 0 °C. The reaction mixture was stirred for 5 min followed by the addition of TosMIC (5.0 mmol), then continued the stirring for 2–3 h. After completion of the reaction, EtOH was removed under reduced pressure; extracted and purified the crude product 3a as mentioned the above procedure. The characterisation data were identical with the products isolated in the earlier protocol.
  • 29 Bratulescu G. Synth. Commun. 2008; 38: 2748