Synlett 2016; 27(08): 1133-1138
DOI: 10.1055/s-0035-1561364
synpacts
© Georg Thieme Verlag Stuttgart · New York

Let’s Sort It Out: Self-Sorting of Covalent Organic Cage Compounds

Florian Beuerle*
Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: florian.beuerle@uni-wuerzburg.de
,
Stefanie Klotzbach
Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: florian.beuerle@uni-wuerzburg.de
,
Ayan Dhara
Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: florian.beuerle@uni-wuerzburg.de
› Author Affiliations
Further Information

Publication History

Received: 07 December 2015

Accepted after revision: 11 January 2016

Publication Date:
08 February 2016 (online)


Abstract

Dynamic covalent self-assembly of small and rigid precursors into cage-type architectures can serve as a powerful strategy for the formation of molecular porous units. In order to enhance the functionality of suchlike nanostructures, formation of complex multicomponent assemblies with high spatial precision, and on-demand control of both reversible assembly and disassembly is highly desirable. Here we highlight some of our most recent achievements on the size-specific synthesis and self-sorting properties within a series of covalent organic cage compounds and the stimuli-responsive assembly of supramolecular cages assembled by boron–nitrogen dative bonds.

1 Introduction

2 Self-Sorting of Covalent Organic Cages

3 Stimuli-Responsive Cages

4 Conclusion and Outlook

 
  • References

  • 1 Jin Y, Yu C, Denman RJ, Zhang W. Chem. Soc. Rev. 2013; 42: 6634
  • 2 Slater AG, Cooper AI. Science 2015; 348: 988
  • 4 Cook TR, Stang PJ. Chem. Rev. 2015; 115: 7001
    • 6a Rue NM, Sun J, Warmuth R. Isr. J. Chem. 2011; 51: 743
    • 6b Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
    • 7a Mastalerz M, Schneider MW, Oppel IM, Presly O. Angew. Chem. Int Ed. 2011; 50: 1046
    • 7b Mastalerz M. Chem. Eur. J. 2012; 18: 10082
    • 7c Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 1516
  • 8 Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE, Hasell T, Little MA, Kewley A, Briggs ME, Stephenson A, Thomas KM, Armstrong JA, Bell J, Busto J, Noel R, Liu J, Strachan DM, Thallapally PK, Cooper AI. Nat. Mater. 2014; 13: 954
    • 9a Ferrand Y, Crump MP, Davis AP. Science 2007; 318: 619
    • 9b Lin Z, Sun J, Efremovska B, Warmuth R. Chem. Eur. J. 2012; 18: 12864
    • 9c Mitra T, Jelfs KE, Schmidtmann M, Ahmed A, Chong SY, Adams DJ, Cooper AI. Nat. Chem. 2013; 5: 276
    • 10a Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Adv. Mater. 2012; 24: 6049
    • 10b Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Chem. Commun. 2013; 49: 8398
    • 10c Acharyya K, Mukherjee PS. Chem. Eur. J. 2015; 21: 6823
    • 11a Zhang Q, Tiefenbacher K. Nat. Chem. 2015; 7: 197
    • 11b Sun JK, Zhan WW, Akita T, Xu Q. J. Am. Chem. Soc. 2015; 137: 7063
  • 12 Klotzbach S, Beuerle F. Angew. Chem. Int. Ed. 2015; 54: 10356
  • 13 Dhara A, Beuerle F. Chem. Eur. J. 2015; 21: 17391
    • 14a Safont-Sempere MM, Fernández G, Würthner F. Chem. Rev. 2011; 111: 5784
    • 14b Saha ML, Schmittel M. Org. Biomol. Chem. 2012; 10: 4651
    • 14c He Z, Jiang W, Schalley CA. Chem. Soc. Rev. 2015; 44: 779
  • 15 Wu A, Isaacs L. J. Am. Chem. Soc. 2003; 125: 4831
    • 16a Hasell T, Wu X, JonesJames TA, Bacsa J, Steiner A, Mitra T, Trewin A, Adams DJ, Cooper AI. Nat. Chem. 2010; 2: 750
    • 16b Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 5126
  • 17 Ponnuswamy N, Cougnon FB, Clough JM, Pantos GD, Sanders JK. Science 2012; 338: 783
  • 18 Giri N, Del Pópolo MG, Melaugh G, Greenaway RL, Rätzke K, Koschine T, Pison L, Gomes MF. C, Cooper AI, James SL. Nature (London, U.K.) 2015; 527: 216
  • 19 Wilson A, Gasparini G, Matile S. Chem. Soc. Rev. 2014; 43: 1948
  • 20 Icli B, Christinat N, Tonnemann J, Schüttler C, Scopelliti R, Severin K. J. Am. Chem. Soc. 2009; 131: 3154
    • 21a Okochi KD, Han GS, Aldridge IM, Liu Y, Zhang W. Org. Lett. 2013; 15: 4296
    • 21b Jin Y, Wang Q, Taynton P, Zhang W. Acc. Chem. Res. 2014; 47: 1575
  • 22 Acharyya K, Mukherjee S, Mukherjee PS. J. Am. Chem. Soc. 2013; 135: 554
  • 23 Acharyya K, Mukherjee PS. Chem. Eur. J. 2014; 20: 1646
  • 24 Acharyya K, Mukherjee PS. Chem. Commun. 2015; 51: 4241
    • 25a Wang T, Zhang Y.-F, Hou Q.-Q, Xu W.-R, Cao X.-P, Chow H.-F, Kuck D. J. Org. Chem. 2013; 78: 1062
    • 25b Xu WR, Xia GJ, Chow HF, Cao XP, Kuck D. Chem. Eur. J. 2015; 21: 12011
    • 25c Greschner W, Neumann B, Stammler H.-G, Gröger H, Kuck D. Angew. Chem. Int. Ed. 2015; 54: 13764
  • 26 Klotzbach S, Scherpf T, Beuerle F. Chem. Commun. 2014; 50: 12454
  • 27 Stang PJ, Olenyuk B. Acc. Chem. Res. 1997; 30: 502
    • 28a Christinat N, Scopelliti R, Severin K. J. Org. Chem. 2007; 72: 2192
    • 28b Icli B, Solari E, Kilbas B, Scopelliti R, Severin K. Chem. Eur. J. 2012; 18: 14867
    • 29a Kataoka K, James TD, Kubo Y. J. Am. Chem. Soc. 2007; 129: 15126
    • 29b Icli B, Sheepwash E, Riis-Johannessen T, Schenk K, Filinchuk Y, Scopelliti R, Severin K. Chem. Sci. 2011; 2: 1719
    • 30a Sheepwash E, Krampl V, Scopelliti R, Sereda O, Neels A, Severin K. Angew. Chem. Int. Ed. 2011; 50: 3034
    • 30b Cruz-Huerta J, Salazar-Mendoza D, Hernández-Paredes J, Hernández Ahuactzi IF, Höpfl H. Chem. Commun. 2012; 48: 4241