Synlett 2016; 27(07): 1077-1082
DOI: 10.1055/s-0035-1561340
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Diastereoselective 1,6-Conjugate Addition of Arylboronic Acids to Securinine

Marc Perez
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
,
Tahar Ayad
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
,
Philippe Maillos
b   Institut de Recherche Pierre Fabre, 81600 Gaillac, France
,
Valérie Poughon
c   Unité de Service et de Recherche CNRS, Pierre Fabre n°3388 ETaC CRDPF, 31035 Toulouse, France   Email: jacques.fahy@pierre-fabre.com
,
Jacques Fahy*
c   Unité de Service et de Recherche CNRS, Pierre Fabre n°3388 ETaC CRDPF, 31035 Toulouse, France   Email: jacques.fahy@pierre-fabre.com
,
Virginie Ratovelomanana-Vidal*
a   PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: virginie.vidal@chimie-paristech.fr
› Author Affiliations
Further Information

Publication History

Received: 30 November 2015

Accepted after revision: 30 December 2015

Publication Date:
21 January 2016 (online)


Abstract

The asymmetric 1,6-conjugate addition of arylboronic acids to natural securinine under rhodium(I) catalysis displays a very high regioselectivity, along with a remarkable diastereoselectivity (>99:1) and high yields. The in vitro cytotoxicity of the resulting securinine analogues was assayed against HCT-116 colon cancer cells, giving a new insight into the structure–activity relationship of securinine.

 
  • References and Notes

  • 1 Perlmutter P. Conjugate Addition in Organic Synthesis . Pergamon; Oxford: 1992

    • For selected reviews, see:
    • 2a Krause N, Thorand S. Inorg. Chim. Acta 1999; 296: 1
    • 2b Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
    • 2c Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
    • 2d Edwards HJ, Hargrave JD, Penrose SD, Frost CG. Chem. Soc. Rev. 2010; 39: 2093

    • For selected books see:
    • 2e Modern Organic Chemistry . Krause N. Wiley-VCH; Weinheim: 2002
    • 2f Catalytic Asymmetric Conjugate Reactions . Córdova A. Wiley-VCH; Weinheim: 2010
    • 3a Morrison KC, Hergenrother PJ. Nat. Prod. Rep. 2014; 31: 6
    • 3b The Nobel Prize in Physiology or Medicine 2015; http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015 (accessed Nov 25, 2015).

      For a review on securinine and its analogues, see:
    • 4a Chirkin E, Atkatlian W, Porée FH. Alkaloids Chem. Biol. 2015; 74: 1

    • For patents and articles, see:
    • 4b Perez M, Vidal V, Ayad T, Fahy J, Maillos P. PCT 14306944.1, 2015
    • 4c Gundluru MK, Agarwal M, Xia Z, Karan G, Wald DN. WO 2015051284, 2015
    • 4d Perez M, Vidal V, Ayad T, Fahy J, Maillos P. EP 15305954.8, 2015
    • 5a Klochkov SG, Afanas’eva SV, Grigor’ev VV. Chem. Nat. Compd. 2008; 44: 197
    • 5b Klochkov SG, Neganova ME, Afanas’eva SV, Shevtsova EF. Pharm. Chem. J. 2014; 48: 15
  • 6 Gupta K, Chakrabarti A, Rana S, Ramdeo R, Roth BL, Agarwal ML, Tse W, Agarwal MK, Wald DN. PLoS One 2011; 6: e21203
    • 7a Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR. Nat. Chem. Biol. 2010; 6: 900
    • 7b Kaplan A, Stockwell B. ACS Med. Chem. Lett. 2015; 6: 966

      For reviews, see:
    • 8a Csákÿ AG, de la Herrán G, Murcia CM. Chem. Soc. Rev. 2010; 39: 4080
    • 8b Silva EM. P, Silva AM. M. S. Synthesis 2012; 3109
  • 9 de la Herrán G, Murcia CM, Csákÿ AG. Org. Lett. 2005; 7: 5629

    • 2-Hetarylboronic acids are known to undergo rapid degradation by protodeboronation or oxidation processes. For examples, see:
    • 10a Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
    • 10b Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073
    • 10c Albrecht F, Sowada O, Fistikci M, Boysen MM. K. Org. Lett. 2014; 16: 5212
  • 11 Crystallographic data for compound 2e have been deposited with the accession number CCDC 1439457, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 12 Under similar experimental conditions, securinine (1) was found to inhibit the proliferation by 90% at 20 µM.
  • 13 Synthesis of Arylsecurine Derivatives 2 from Securinine (1); General Procedure A 10 mL glass screw-cap tube, capped with a rubber septum, was charged with securinine (1; 108 mg, 0.5 mmol), [Rh(C2H4)2Cl]2 (5 mol%, corresponding to 10 mol% Rh), and the appropriate arylboronic acid (3 equiv) under argon. DCE (2 mL), H2O (0.2 mL), and Et3N (0.5 equiv) were then added under argon. The septum was replaced by a screw cap, and the mixture was stirred at 110 °C in an oil bath. After 24 h, the mixture was treated with 0.5 M aq NaOH (5 mL) and diluted with CH2Cl2 (5 mL). The aqueous layer was extracted with CH2Cl2 (3 × 10 mL), and the combined organic layers were dried (MgSO4), filtered, and concentrated to dryness. Purification by flash column chromatography on silica gel gave the addition product 2. Compound 2a White solid; yield: 107 mg (73%); mp 126 °C; Rf = 0.83 (PE–EtOAc, 50:50); [α]D 20 +131 (c 0.10, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.28–7.16 (m, 5 H), 5.59 (d, J = 2.2 Hz, 1 H), 3.20 (d, J = 6.2 Hz, 1 H), 3.11–2.99 (m, 2 H), 2.91–2.73 (m, 4 H), 2.47–2.41 (m, 1 H), 1.79–1.75 (m, 1 H), 1.60–1.53 (m, 2 H), 1.39–1.14 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.6, 173.3, 142.7, 128.4, 127.6, 126.9, 110.0, 91.1, 66.0, 61.0, 50.6, 50.1, 39.3, 29.8, 26.1, 24.1, 21.6. MS (CI, NH3): m/z = 296 [M + H]+. Compound 2b Brown solid; yield: 130 mg (80%); mp 132 °C; Rf = 0.30 (PE–EtOAc, 75:25); [α]D 20 +128 (c 0.10, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.21 (t, J = 7.9 Hz, 1 H), 6.93–6.86 (m, 2 H), 6.81 (ddd, J = 8.2, 2.6, 0.9 Hz, 1 H), 5.64 (d, J = 2.2 Hz, 1 H), 3.80 (s, 3 H), 3.27 (d, J = 6.2 Hz, 1 H), 3.17–3.11 (m, 1 H), 3.09–2.98 (m, 1 H), 2.97–2.86 (m, 2 H), 2.84–2.77 (m, 2 H), 2.62–2.54 (m, 1 H), 1.87–1.80 (m, 1 H), 1.65–1.58 (m, 2 H), 1.46–1.19 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.5, 173.2, 159.6, 144.4, 129.2, 120.0, 113.3, 112.0, 109.9, 91.1, 65.8, 60.9, 55.1, 50.6, 50.1, 39.3, 29.9, 26.1, 24.1, 21.6. MS (CI, NH3): m/z = 326 [M + H]+, 343 [M + NH4]+. Compound 2c Beige solid; yield: 111.5 mg (69%); mp 225 °C; Rf = 0.41 (PE–EtOAc, 75:25); [α]D 20 +200 (c 0.10, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 6.94 (s, 2 H), 6.89 (s, 1 H), 5.65 (d, J = 2.2 Hz, 1 H), 3.26 (d, J = 6.2 Hz, 1 H), 3.18–3.04 (m, 2 H), 3.00–2.90 (m, 2 H), 2.88–2.72 (m, 2 H), 2.61–2.53 (m, 1 H), 2.31 (s, 6 H), 1.89–1.83 (m, 1 H), 1.66–1.57 (m, 2 H), 1.44–1.17 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.8, 173.3, 142.6, 137.7, 128.4, 125.4, 109.8, 91.1, 65.9, 60.9, 50.6, 50.1, 39.4, 29.9, 26.2, 24.2, 21.8, 21.3. MS (CI, NH3): m/z = 324 [M + H]+, 341 [M + NH4]+. Compound 2e Orange solid; yield: 123 mg (80%); mp 175 °C; Rf = 0.26 (PE–EtOAc, 65:35); [α]D 20 +110 (c 0.15, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.95 (t, J = 1.6 Hz, 1 H), 7.82 (dt, J = 7.7, 1.5 Hz, 1 H), 7.53 (dt, J = 7.7, 1.5 Hz, 1 H), 7.39 (t, J = 7.7 Hz, 1 H), 5.65 (d, J = 2.2 Hz, 1 H), 3.25 (d, J = 6.2 Hz, 1 H), 3.19–3.05 (m, 2 H), 2.97–2.88 (m, 3 H), 2.81 (dd, J = 10.6, 6.3 Hz, 1 H), 2.59 (s, 3 H), 2.51–2.44 (m, 1 H), 1.87–1.79 (m, 1 H), 1.66–1.58 (m, 2 H), 1.44–1.18 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 198.0, 174.0, 173.0, 143.3, 137.2, 132.4, 128.6, 127.3, 127.0, 110.1, 91.0, 65.9, 60.9, 50.2, 50.1, 39.1, 29.8, 26.6, 26.0, 24.0, 21.4. MS (CI, NH3): m/z = 338 [M + H]+. Compound 2f Orange solid; yield: 108 mg (67%); mp 144 °C; Rf = 0.48 (PE–EtOAc, 50:50); [α]D 20 +91 (c 0.11, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 9.95 (s, 1 H), 7.80 (d, J = 8.2 Hz, 2 H), 7.49 (d, J = 8.2 Hz, 2 H), 5.66 (d, J = 1.8 Hz, 1 H), 3.26 (d, J = 6.1 Hz, 1 H), 3.17–3.04 (m, 2 H), 2.98–2.88 (m, 3 H), 2.86–2.78 (m, 1 H), 2.48–2.41 (m, 1 H), 1.85–1.77 (m, 1 H), 1.67–1.55 (m, 2 H), 1.42–1.14 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 191.8, 173.7, 172.9, 149.8, 135.2, 129.8, 128.2, 110.2, 90.9, 65.9, 60.9, 50.6, 50.1, 39.1, 29.4, 25.9, 23.9, 21.4. MS (CI, NH3): m/z = 324 [M + H]+, 341 [M + NH4]+. Compound 2g Yellow solid; yield: 125.4 mg (71%); mp 181 °C; Rf = 0.32 (PE–EtOAc, 75:25); [α]D 20 +199 (c 0.14, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.97 (d, J = 8.4 Hz, 2 H), 7.40 (d, J = 8.4 Hz, 2 H), 5.67 (d, J = 2.2 Hz, 1 H), 3.90 (s, 3 H), 3.26 (d, J = 6.2 Hz, 1 H), 3.19–3.06 (m, 2 H), 2.96–2.80 (m, 4 H), 2.50–2.42 (m, 1 H), 1.87–1.80 (m, 1 H), 1.67–1.59 (m, 2 H), 1.44–1.20 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.0, 173.1, 166.9, 148.0, 129.7, 128.8, 127.6, 110.3, 91.0, 66.0, 61.0, 52.0, 50.6, 50.1, 39.2, 29.5, 26.1, 24.0, 21.5. MS (CI, NH3): m/z = 354 [M + H]+, 371 [M + NH4]+. Compound 2h Orange solid; yield: 106.5 mg (68%); mp 137 °C; Rf = 0.41 (PE–EtOAc, 75:25); [α]D 20 +148 (c 0.12, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.23–7.15 (m, 1 H), 7.04–6.99 (m, 2 H), 6.86 (tdd, J = 8.5, 2.5, 1.0 Hz, 1 H), 5.59 (d, J = 2.1 Hz, 1 H), 3.19 (d, J = 6.3 Hz, 1 H), 3.11–3.05 (m, 1 H), 2.99–2.81 (m, 3 H), 2.80–2.71 (m, 2 H), 2.50–2.42 (m, 1 H), 1.80–1.74 (m, 1 H), 1.59–1.51 (m, 2 H), 1.39–1.13 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.0, 173.1, 162.8 (d, J = 245.4 Hz), 145.4 (d, J = 7.1 Hz), 129.7 (d, J = 8.3 Hz), 123.3 (d, J = 2.0 Hz), 114.3 (d, J = 21.7 Hz), 113.7 (d, J = 21.1 Hz), 110.1, 91.0, 65.9, 60.9, 50.2, 50.0, 39.1, 29.7, 26.0, 24.0, 21.5. MS (CI, NH3): m/z = 314 [M + H]+, 331 [M + NH4]+. Compound 2i Orange solid; yield: 130 mg (79%); mp 208 °C; Rf = 0.43 (PE–EtOAc, 75:25); [α]D 20 +181 (c 0.14, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.20 (br s, 4 H), 5.59 (d, J = 2.1 Hz, 1 H), 3.15 (d, J = 6.2 Hz, 1 H), 3.10–3.04 (m, 1 H), 3.02–2.90 (m, 2 H), 2.89–2.72 (m, 3 H), 2.44 (dt, J = 13.5, 3.7 Hz, 1 H), 1.81–1.74 (m, 1 H), 1.58–1.52 (m, 2 H), 1.38–1.15 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.1, 173.1, 141.2, 132.6, 128.9, 128.5, 110.1, 91.0, 65.9, 60.9, 50.1, 49.9, 39.1, 29.8, 26.0, 24.0, 21.5. MS (CI, NH3): m/z = 330 [M + H]+, 347 [M + NH4]+. Compound 2j Brown solid; yield: 127 mg (70%); mp 224 °C; Rf = 0.53 (PE–EtOAc, 70:30); [α]D 20 +115 (c 0.10, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.57 (d, J = 8.1 Hz, 2 H), 7.45 (d, J = 8.1 Hz, 2 H), 5.68 (d, J = 2.2 Hz, 1 H), 3.26 (d, J = 6.2 Hz, 1 H), 3.20–3.05 (m, 2 H), 2.98–2.81 (m, 4 H), 2.50 (dd, J = 13.3, 3.8, 2.5 Hz, 1 H), 1.88–1.81 (m, 1 H), 1.69–1.60 (m, 2 H), 1.47–1.22 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 173.7, 172.9, 146.8, 129.3 (q, J = 32.4 Hz), 128.0, 125.3 (q, J = 3.5 Hz), 124.2 (q, J = 271.8 Hz), 110.4, 91.0, 65.9, 61.0, 50.4, 50.2, 39.2, 29.7, 26.0, 24.0, 21.4. MS (CI, NH3): m/z = 364 [M + H]+, 381 [M + NH4]+. Compound 2k Yield: 127.3 mg (74%); mp 182 °C; Rf = 0.30 (PE–EtOAc, 75:25); [α]D 20 +182 (c 0.10, CHCl3). 1H NMR (300 MHz, CDCl3): δ =7.84–7.79 (m, 3 H), 7.74 (br s, 1 H), 7.52–7.45 (m, 3 H), 5.68 (d, J = 2.2 Hz, 1 H), 3.33 (d, J = 6.2 Hz, 1 H), 3.24–3.17 (m, 2 H), 3.03–2.93 (m, 3 H), 2.91–2.82 (m, 1 H), 2.47 (dd, J = 13.6, 3.3 Hz, 1 H), 1.88–1.80 (m, 1 H), 1.70–1.61 (m, 2 H), 1.46–1.20 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 174.5, 173.2, 140.1, 133.3, 132.5, 127.9, 127.6, 127.5, 126.2, 126.0, 125.9, 125.6, 110.0, 91.1, 65.9, 61.0, 50.7, 50.1, 39.3, 29.7, 26.2, 24.1, 21.6. MS (CI, NH3): m/z = 346 [M + H]+, 363 [M + NH4]+. Compound 2l Yield: 35.6 mg (25%); mp 141 °C; Rf = 0.27 (PE–EtOAc, 75:25); [α]D 20 +186 (c 0.14, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.32 (dd, J = 1.8, 0.8 Hz, 1 H), 6.30 (dd, J = 3.2, 1.8 Hz, 1 H), 6.07 (d, J = 3.2 Hz, 1 H), 5.65 (d, J = 1.6 Hz, 1 H), 3.54 (d, J = 6.2 Hz, 1 H), 3.04–2.90 (m, 4 H), 2.86–2.74 (m, 2 H), 2.54–2.47 (m, 1 H), 1.86–1.80 (m, 1 H), 1.59–1.53 (m, 2 H), 1.38–1.18 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 173.4, 167.4, 149.4, 142.6, 132.9, 124.3, 111.6, 107.8, 106.5, 90.0, 62.7, 58.2, 48.8, 42.3, 27.3, 25.9, 24.5. MS (CI, NH3): m/z = 286 [M + H]+, 303 [M + NH4]+.