Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(05): 736-740
DOI: 10.1055/s-0035-1561304
DOI: 10.1055/s-0035-1561304
cluster
Radical Pentafluorosulfanylphenylation of Styrenes by Photoredox Catalysis
Further Information
Publication History
Received: 23 October 2015
Accepted after revision: 07 December 2015
Publication Date:
05 January 2016 (online)
Abstract
Simple and versatile radical pentafluorosulfanylphenylation (SF5-phenylation) of styrenes by photoredox catalysis has been developed. Pentafluorosulfanylphenyliodonium salts (SF5-phenyliodonium salts), which can be easily prepared from SF5-phenyl iodides and handled without special caution, serve as precursors of SF5-phenyl radicals by action of a ruthenium photoredox catalyst, [Ru(bpy)3]2+. Radical phenylation of styrenes combined with solvolysis or deprotonation leads to a variety of SF5-phenyl-containing compounds via a single step.
Key words
photoredox catalysis - pentafluorosulfanyl group - diaryliodonium salt - phenyl radical - radical reaction - arylation - photochemistrySupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561304.
- Supporting Information
-
References and Notes
- 1a Kirsch P, Bremer M, Heckmeier M, Tarumi K. Angew. Chem. Int. Ed. 1999; 38: 1989
- 1b Kirsch P, Bremer M. Angew. Chem. Int. Ed. 2000; 39: 4216
- 1c Altomonte S, Zanda M. J. Fluorine Chem. 2012; 143: 57
- 1d Savoie PR, Welch JT. Chem. Rev. 2015; 115: 1130
- 2a Welch JT, Lim DS. Bioorg. Med. Chem. 2007; 15: 6659
- 2b Wipf P, Mo T, Geib SJ, Caridha D, Dow GS, Gerena L, Roncal N, Milner EE. Org. Biomol. Chem. 2009; 7: 4163
- 2c Mo T, Mi X, Milner EE, Dow GS, Wipf P. Tetrahedron Lett. 2010; 51: 5137
- 3 Umemoto T, Garrick LM, Saito N. Beilstein J. Org. Chem. 2012; 8: 461
- 4a Sipyagin AM, Bateman CP, Tan Y.-T, Thrasher JS. J. Fluorine Chem. 2001; 112: 287
- 4b Sipyagin AM, Enshov VS, Kashtanov SA, Bateman CP, Mullen BD, Tan Y.-T, Thrasher JS. J. Fluorine Chem. 2004; 125: 1305
- 4c Sipyagin AM, Bateman CP, Matsev AV, Waterfeld A, Jilek RE, Key CD, Szulczewski GJ, Thrasher JS. J. Fluorine Chem. 2014; 167: 203
- 4d Kanishchev OS, Dolbier WR. Jr. Angew. Chem. Int. Ed. 2015; 54: 280
- 5a Bowden RD, Comina PJ, Greenhall MP, Kariuki BM, Loveday A, Philp D. Tetrahedron 2000; 56: 3399
- 5b Beier P, Pastýříková T, Vida N, Lakobson G. Org. Lett. 2011; 13: 1466
- 5c Frischmuth A, Unsinn A, Groll K, Stadtmüller H, Knochel P. Chem. Eur. J. 2012; 18: 10234
- 5d Wang C, Yu Y.-B, Fan S, Zhang X. Org. Lett. 2013; 15: 5004
- 5e Joliton A, Carreira EM. Org. Lett. 2013; 15: 5147
- 5f Shrestha R, Dorn SC. M, Weix DJ. J. Am. Chem. Soc. 2013; 135: 751
- 5g Okazaki T, Laali KK, Bunge SD, Adas SK. Eur. J. Org. Chem. 2014; 1630
- 5h Matsuzaki K, Okuyama K, Tokunaga E, Saito N, Shiro M, Shibata N. Org. Lett. 2015; 17: 3038
-
6a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
-
6b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 6c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 6d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 6e Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 6f Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
- 6g Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 6h Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
- 6i Koike T, Akita M. Top. Catal. 2014; 57: 967
- 6j Akita M, Koike T. Compt. Rend. Chim. 2015; 18: 742
- 7a Cao-Yelo H, Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
- 7b Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
- 7c Schroll P, Hari DP, König B. ChemistryOpen 2012; 1: 130
-
7d Hari DP, Schroll P, König B. J. Am. Chem. Soc. 2012; 134: 2958
- 7e Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
- 7f Hari DP, Hering T, König B. Angew. Chem. Int. Ed. 2014; 53: 725
- 7g Neufeldt SR, Sanford MS. Adv. Synth. Catal. 2012; 354: 3517
- 7h Liu Y.-X, Xue D, Wang J.-D, Zhao C.-J, Zou Q.-Z, Wang C, Xiao J. Synlett 2013; 24: 507
- 7i Baralle A, Fensterbank L, Goddard J.-P, Ollivier C. Chem. Eur. J. 2013; 19: 10809
- 7j Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2013; 15: 4398
- 7k Tobisu M, Furukawa T, Chatani N. Chem. Lett. 2013; 42: 1203
- 7l Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
- 7m Kim H, Lee C. Angew. Chem. Int. Ed. 2012; 51: 12303
- 7n Cheng Y, Gu X, Li P. Org. Lett. 2013; 15: 2664
- 7o Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
- 7p Donck S, Baroudi A, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2013; 355: 1477
- 7q Deng G.-B, Wang Z.-Q, Xia J.-D, Qian P.-C, Song R.-J, Hu M, Gong L.-B, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535
- 7r Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
- 8a Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
- 8b Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
- 8c Koike T, Akita M. Synlett 2013; 24: 2492
- 8d Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
- 8e Miyazawa K, Koike T, Akita M. Chem. Eur. J. 2015; 21: 11677
- 8f Tomita R, Koike T, Akita M. Angew. Chem. Int. Ed. 2015; 54: 12923
- 9 Experimental Procedures for the Synthesis of 1a To a stirred solution of pentafluoro(4-iodophenyl)-λ6-sulfane (331 mg, 1.0 mmol) in CH2Cl2–CF3CH2OH (v/v = 1:1, 10.0 mL) was added 69–75 wt% grade of mCPBA (230 mg, 1.0 mmol), followed by addition of TsOH (190 mg, 1.0 mmol). The resulting solution was stirred for 3 h at 40 °C and concentrated under a stream of air, then Et2O (20.0 mL) was added to the residue. The precipitate was filtered and dried in vacuo to afford Koser-type reagent 1′a (459 mg, 89% yield). To a stirred solution of mesitylene (108 mg, 1.0 mmol) in CF3CH2OH (5.0 mL) was added 1′a in one portion at r.t., and the reaction mixture was stirred for 24 h. The mixture was concentrated, and the resulting crude product was precipitated by addition of Et2O. The precipitate was filtered and dried in vacuo to give the product 1a (509 mg, 89%). Recrystallization from MeOH–CH2Cl2 afforded colorless crystals suitable for single-crystal X-ray measurement. Comound 1a: 1H NMR (500 MHz, CD3OD, r.t.): δ = 2.37–2.38 (6 H, Me in mesityl and tosyl), 2.66 (s, 6 H, Me in mesityl), 7.22 (d, J = 7.5 Hz, 2 H, tosyl), 7.29 (s, 2 H, mesityl), 7.70 (d, J = 7.0 Hz, 2 H, tosyl), 7.96 (d, J = 8.0 Hz, 2 H, SF5Ph), 8.05 (d, J = 8.0 Hz, 2 H, SF5Ph). 19F NMR (376 MHz, CD3OD, r.t.): δ = 60.1 (d, J = 148.1 Hz, 4 F), 78.9 (quin, J = 149.5 Hz, 1 F). 13C NMR (125 MHz, CD3OD, r.t.): δ = 21.0 (p-Me in mesityl), 21.3 (Me in tosyl), 27.1 (o-Me in mesityl), 117.5 (mesityl), 122.5 (mesityl), 126.9 (tosyl), 129.8 (tosyl), 130.5 (m, SF5Ph), 131.5 (mesityl), 135.8 (SF5Ph), 141.6 (tosyl), 143.6 (tosyl), 143.7 (SF5Ph), 146.3 (mesityl), 157.1 (apparent t, J = 22.9 Hz, SF5Ph). HRMS (ESI-TOF): m/z calcd for [C15H15F5SI]+: 448.9854; found: 448.9856. For related synthetic method, see: Dohi T., Yamaoka N., Kita Y.; Tetrahedron; 2010, 66: 5775.
- 10 Compound 1a: CCDC 1431812 contains the supplementary crystallographic data. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
For selected examples of synthesis of SF5-arenes, see:
For selected examples of SF5-arylation of organic molecules, see:
For selected reviews on photoredox catalysis, see:
For aryldiazonium salts, see:
For aryliodonium salts, see:
For arylhalides, see:
For arylsulfonium salts, see:
For arylsulfonyl chlorides, see:
For arylborates, see: