Synlett 2016; 27(05): 749-753
DOI: 10.1055/s-0035-1561284
cluster
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Activated Enantioselective Perfluoroalkylation with a Chiral Iridium Photoredox Catalyst

Haohua Huo
a   Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
,
Xiaoqiang Huang
a   Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
,
Xiaodong Shen
a   Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
,
Klaus Harms
a   Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
,
Eric Meggers*
a   Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
b   College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: meggers@chemie.uni-marburg.de
› Author Affiliations
Further Information

Publication History

Received: 31 October 2015

Accepted: 18 November 2015

Publication Date:
23 December 2015 (online)


Abstract

A visible-light-activated enantioselective radical perfluoroalkylation of 2-acyl imidazoles with perfluoroalkyl iodides (CF3I, C3F7I, C4F9I, C6F13I, C8F17I and C10F21I) and perfluorobenzyl iodide at the α-position of the carbonyl group is reported. Enantioselectivities with up to >99.5% ee are achieved. The process uses a dual-function chiral Lewis acid/photoredox catalyst at loadings of 2–4 mol% and constitutes a redox-neutral, electron-catalyzed reaction that proceeds via intermediate perfluoroalkyl radicals.

Supporting Information

 
  • References and Notes


    • For reviews on asymmetric catalysis through visible-light activation, see:
    • 1a Wang C, Lu Z. Org. Chem. Front. 2015; 2: 179
    • 1b Meggers E. Chem. Commun. 2015; 51: 3290
    • 1c Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
    • 1d Peña-López M, Rosas-Hernández A, Beller M. Angew. Chem. Int. Ed. 2015; 54: 5006

      For reviews on photoredox catalysis, see:
    • 2a Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 2b Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 2c Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 2d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2010; 40: 102
    • 2e Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
    • 2f Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 2g Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 2h Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2012; 42: 97
    • 2i Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 2j Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2k Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 2l Schultz DM, Yoon TP. Science 2014; 343: 1239176
  • 3 For reactions involving single-electron transfer, see: Zhang N, Samanta SR, Rosen BM, Percec V. Chem. Rev. 2014; 114: 5848

    • For selected examples, see:
    • 4a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 4b Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 4c Neumann M, Füldner S, König B, Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
    • 4d DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 4e Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew. Chem. Int. Ed. 2012; 51: 4062
    • 4f Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
    • 4g Cecere G, König CM, Alleva JL, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 11521
    • 4h Bergonzini G, Schindler CS, Wallentin C.-J, Jacobsen EN, Stephenson CR. J. Chem. Sci. 2013; 5: 112
    • 4i Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
    • 4j Du J, Skubi KL, Schultz DM, Yoon TP. Science 2014; 344: 392
    • 4k Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
    • 4l Zhu Y, Zhang L, Luo S. J. Am. Chem. Soc. 2014; 136: 14642
    • 4m Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
    • 4n Woźniak Ł, Murphy JJ, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
    • 4o Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
  • 5 Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L.-A, Harms K, Marsch M, Hilt G, Meggers E. Nature 2014; 515: 100
  • 6 Wang C, Zheng Y, Huo H, Röse P, Zhang L, Harms K, Hilt G, Meggers E. Chem. Eur. J. 2015; 21: 7355
  • 7 Huo H, Wang C, Harms K, Meggers E. J. Am. Chem. Soc. 2015; 137: 9551
  • 8 Tan Y, Yuan W, Gong L, Meggers E. Angew. Chem. Int. Ed. 2015; 54: 13045

    • For perfluoroalkylations through photoredox chemistry, see:
    • 9a Nagib DA, Scott ME, MacMillan DW. J. Am. Chem. Soc. 2009; 131: 10875
    • 9b Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
    • 9c Pham PV, Nagib DA, MacMillan DW. Angew. Chem. Int. Ed. 2011; 50: 6119
    • 9d Nappi M, Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 4921
    • 9e Fernández-Alvarez VM, Nappi M, Melchiorre P, Maseras F. Org. Lett. 2015; 17: 2676
    • 9f Sladojevich F, McNeill E, Börgel J, Zheng SL, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3712
    • 9g Filippini G, Nappi M, Melchiorre P. Tetrahedron 2015; 71: 4535
    • 9h Beatty JW, Douglas JJ, Cole KP, Stephenson CR. J. Nat. Commun. 2015; 6: 7919
    • 9i Sahoo B, Li JL, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 1157 7. See also ref. 4n
  • 10 For a review on metal-mediated radical perfluoroalkylation, see: Barata-Vallejo S, Postigo A. Coord. Chem. Rev. 2013; 257: 3051
  • 11 For a recent review on radical trifluoromethylation, see: Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
  • 12 Shen X, Huo H, Wang C, Zhang B, Harms K, Meggers E. Chem. Eur. J. 2015; 21: 9720
  • 13 See also: Huo H, Fu C, Harms K, Meggers E. J. Am. Chem. Soc. 2014; 136: 2990
  • 14 Li J, Djurovich PI, Alleyne BD, Yousufuddin M, Ho NN, Thomas JC, Peters JC, Bau R, Thompson ME. Inorg. Chem. 2005; 44: 1713
  • 15 General photolysis procedure: A dried 10 mL Schlenk tube was charged with catalyst Λ-Ir2 or Δ-Ir2 (2 or 4 mol%), NaHCO3 (25.2 mg, 0.3 mmol, 1.1 equiv), and the corresponding 2-acyl imidazole (0.2 mmol, 1.0 equiv). The tube was purged with nitrogen and MeOH–THF (4:1, 0.5 mL) was added by using a syringe, followed by the perfluoroalkyl iodide (6–10 equiv). The reaction mixture was degassed in three freeze-pump-thaw cycles, then the vial was sealed and positioned approximately 5 cm from a 21 W compact fluorescent lamp (CFL). The reaction was stirred at room temperature for the indicated time (monitored by TLC) under a nitrogen atmosphere.
  • 16 For a diastereoselective addition of perfluoroalkyl radicals to titanium enolates, see: Herrmann AT, Smith LL, Zakarian A. J. Am. Chem. Soc. 2012; 134: 6976
  • 17 Chanon M, Tobe ML. Angew. Chem., Int. Ed. Engl. 1982; 21: 1
  • 18 Studer A, Curran DP. Nat. Chem. 2014; 6: 765