Synlett 2016; 27(04): 571-574
DOI: 10.1055/s-0035-1561279
cluster
© Georg Thieme Verlag Stuttgart · New York

Direct Asymmetric Friedel–Crafts Reaction of Naphthols with Acetals Catalyzed by Chiral Brønsted Acids

Long Qin
a   Institute of Biochemistry & Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. of China
,
Pei Wang
a   Institute of Biochemistry & Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. of China
,
Yixin Zhang
a   Institute of Biochemistry & Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. of China
,
Zhengxiang Ren
a   Institute of Biochemistry & Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. of China
,
Xin Zhang
a   Institute of Biochemistry & Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. of China
,
Chao-Shan Da*
a   Institute of Biochemistry & Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. of China
b   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   eMail: dachaoshan@lzu.edu.cn
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 01. September 2015

Accepted after revision: 14. November 2015

Publikationsdatum:
23. Dezember 2015 (online)


Abstract

The Friedel–Crafts method synthesis of chiral ethers from various acetals and naphthols catalyzed by chiral Brønsted acids with acetic acid as an effective additive is described. We found that the chiral phosphoric acid (R)-TRIP could efficiently catalyze the asymmetric Friedel–Crafts reaction of naphthols with acetals affording chiral ethers in good enantioselectivity and yield.

Supporting Information

 
  • Reference and Notes

  • 1 L.Q. and P.W. contributed equally.
    • 2a Murase T, Misawa K, Haramizu S, Hase T. Biochem. Pharm. 2009; 78: 78
    • 2b Yassin GH, Koek JH, Jayaraman S, Kuhnert N. J. Agric. Food Chem 2014; 62: 9848
    • 2c Colon M, Nerin C. J. Agric. Food Chem. 2014; 62: 6777
    • 2d Hu Q.-F, Zhou B, Huang J.-M, Jiang Z.-Y, Huang X.-Z, Yang L.-Y, Gao X.-M, Yang G.-Y, Che C.-T. J. Nat. Prod. 2013; 76: 1866
    • 2e Katavic LP, Lamb K, Navarro H, Prisinzano TE. J. Nat. Prod. 2007; 70: 1278
    • 2f Tsai W.-J, Shen C.-C, Tsai T.-H, Lin L.-C. J. Nat. Prod. 2014; 77: 125
    • 2g Heredia-Vieira SC, Simonet AM, Vilegas W, Macías FA. J. Nat. Prod. 2015; 78: 77
    • 2h Saladino R, Fiani C, Crestini C, Argyropoulos DS, Marini S, Coletta M. J. Nat. Prod. 2007; 70: 39
    • 3a Moquist PN, Kodama T, Schaus SE. Angew. Chem. Int. Ed. 2010; 49: 7096
    • 3b Johnson T, Lautens M. Org. Lett. 2013; 15: 4043
    • 3c Huang Y.-Y, Chakrabarti A, Morita N, Schneider U, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 11121
  • 4 Maity P, Srinivas HD, Watson MP. J. Am. Chem. Soc. 2011; 133: 17142
  • 5 Ueno S, Hartwig JF. Angew. Chem. Int. Ed. 2008; 47: 1928
  • 6 Righi M, Topi F, Bartolucci S, Bedini A, Piersanti G, Spadoni G. J. Org. Chem. 2012; 77: 6351
    • 7a Zerth HM, Leonard NM, Mohan RS. Org. Lett. 2003; 5: 55
    • 7b Watahiki T, Akabane Y, Mori S, Oriyama T. Org. Lett. 2003; 5: 3045
    • 7c Wieland LC, Zerth HM, Mohan RS. Tetrahedron Lett. 2002; 43: 4579
    • 7d Kampen D, List B. Synlett 2006; 2589
    • 7e Momiyama N, Nishimoto H, Terada M. Org. Lett. 2011; 13: 2126
    • 8a O’Reilly S, Aylward M, Keogh-Hansen C, Fitzpatrick B, McManus HA, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2015; 80: 10177
    • 8b Motiwala HF, Vekariya RH, Aubé J. Org. Lett. 2015; 17: 5484
    • 8c Kumar A, Thadkapally S, Menon RS. J. Org. Chem. 2015; 80: 11048
    • 8d Srivastava A, Yadav A, Samanta S. Tetrahedron Lett. 2015; 56: 6003
    • 8e Kim A, Kim S.-G. Eur. J. Org. Chem. 2015; 6419
    • 8f Downey CW, Poff CD, Nizinski AN. J. Org. Chem. 2015; 80: 10364
    • 10a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566 ; Angew. Chem. 2004, 116, 1592
    • 10b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 10c Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
    • 10d Kang Q, Zhao ZA, You SL. J. Am. Chem. Soc. 2007; 129: 1484
    • 10e Uraguchi D, Sorimachi K, Terada M. J. Am. Chem. Soc. 2005; 127: 9360
    • 10f Hashimoto T, Nakatsu H, Yamamoto K, Maruoka K. J. Am. Chem. Soc. 2011; 133: 9730
    • 11a Akiyama T, Tamura Y, Itoh J, Morita H, Fuchibe K. Synlett 2006; 141
    • 11b Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2006; 45: 4796 ; Angew. Chem. 2006, 118, 4914
    • 11c Rueping M, Azap C. Angew. Chem. Int. Ed. 2006; 45: 7832 ; Angew. Chem. 2006, 118, 7996
    • 12a Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M. Org. Lett. 2005; 7: 3781
    • 12b Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424 ; Angew. Chem. 2005, 117, 7590
    • 12c Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
    • 12d Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683 ; Angew. Chem. 2006, 118, 3765
    • 12e Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751 ; Angew. Chem. 2006, 118, 6903
    • 12f Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
    • 13a Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
    • 13b Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009;  131, 9182
    • 13c Martin NJ. A, Chen X, List B. J. Am. Chem. Soc. 2008;  130, 13862
    • 14a Yang C, Xue XS, Jin JL, Li X, Cheng J.-P. J. Org. Chem. 2013; 78: 7076
    • 14b Liu H, Cun LF, Mi AQ, Jiang YZ, Gong LZ. Org. Lett. 2006; 8: 6023
    • 14c Rueping M, Sugiono E, Schoepke FR. Synlett 2007; 1441
    • 14d Li G, Antilla JC. Org. Lett. 2009; 11: 1075
    • 14e Huang S, Kötzner L, De KC, List B. J. Am. Chem. Soc. 2015; 137: 3446
    • 15a Monaco MR, Poladura B, de Los Bernardos MD, Leutzsch M, Goddard R, List B. Angew. Chem. Int. Ed. 2014; 53: 7063
    • 15b Monaco MR, Prévost S, List B. Angew. Chem. Int. Ed. 2014; 53: 8142
    • 15c Mattia RM, Prévost S, List B. J. Am. Chem. Soc. 2015; 136: 16982
  • 16 General Catalytic Enantioselective Reaction of the Naphthol with Acetals: Into a 5-mL dry round bottom flask containing a magnetic stirring bar were added the catalyst (0.04 mmol) and the naphthol (0.4 mmol) under argon. Anhydrous 1,2-dichloroethane (1 mL), acetals (0.2 mmol) and AcOH (0.04 mmol) were added sequentially at r.t. The reaction mixture was stirred at 35 °C until the reaction was complete (checked by TLC). Then the reaction was cooled to 0 °C and a few drops of sat. NaHCO3 were added to quench the reaction. After extraction with CH2Cl2 (3 × 2 mL), the combined organic phases were dried with anhyd Na2SO4 and concentrated under vacuum to give the crude product. Finally purification by column chromatography afforded the expected chiral ethers.1-[Methoxy(o-tolyl)methyl]naphthalen-2-ol (4b): white crystal; mp 85–87 °C; [α]D 20 +23 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 2.65 (s, 3 H), 3.60 (s, 3 H), 6.35 (s, 1 H), 6.88–6.90 (d, J = 6.0 Hz, 1 H), 6.97–7.01 (m, 1 H), 7.18–7.35 (m, 5 H), 7.41–7.43 (m, 1 H), 7.78–7.81 (m, 2 H), 9.23 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 19.3, 58.2, 81.6, 119.4, 121.1, 123.0, 126.3, 126.8, 127.8, 128.8, 128.9, 130.3, 130.8, 154.9. HRMS (ESI, +ve): m/z [M – H] calcd for C19H17O2: 277.1234; found: 277.1228. ee = 55%, determined by chiral HPLC with an OD-H column (hexane–i-PrOH, 99:1); flow rate = 1.0 mL/min; t R = 7.26 (major), t R = 8.97 (minor).2-[Methoxy(phenyl)methyl]naphthalen-1-ol (4n): yellow oil; [α]D 20 +3 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 3.52 (s, 3 H), 5.57 (s, 1 H), 6.96–6.98 (d, J = 8.4 Hz, 1 H), 7.28–7.38 (m, 6 H), 7.46–7.47 (m, 2 H), 7.73–7.75 (m, 1 H), 8.29–8.31 (m, 1 H), 9.04 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 57.4, 87.6, 119.2, 122.3, 125.2, 125.4, 126.2, 126.4, 127.2, 127.4, 128.3, 128.6, 134.0, 140.0, 150.9. ee = 20%, determined by chiral HPLC with an OD-H column (hexane–i-PrOH, 99:1); flow rate: 1.0 mL/min; t R = 8.70 (major), t R = 12.30 (minor).