RSS-Feed abonnieren
DOI: 10.1055/s-0035-1561278
Regiodivergent Iodocyclizations for the Highly Diastereoselective Synthesis of syn- and anti-Hydroxyl-Isochromanones and -Isobenzofuranones: Concise Synthesis of the Isochromanone Core of the Ajudazols
Publikationsverlauf
Received: 30. September 2015
Accepted after revision: 12. November 2015
Publikationsdatum:
29. Dezember 2015 (online)
Abstract
An efficient synthetic strategy to access hydroxyl-isochromanone and -isobenzofurans from readily available joint alkene precursors by a regiodivergent one-pot iodocyclization–substitution tandem process is reported. The cyclizations proceed with excellent diastereoselectivities, with E-alkenes giving syn-configured products and Z-alkenes giving anti-products. A strong influence of light on the regioselectivity of the reaction was observed. High yields were also observed under radical conditions. The protective-group-free method enables a highly concise synthesis of the authentic isochromanone core of the ajudazols, which are highly potent inhibitors of the mitochondrial respiratory chain.
Key words
natural products - asymmetric synthesis - iodocyclisation - tandem reaction - diastereoselectivitySupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561278.
- Supporting Information
-
References
- 1 Present address: MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK.
- 2 Jansen R, Kunze B, Reichenbach H, Höfle G. Eur. J. Org. Chem. 2002; 917
- 3a Menche D. Nat. Prod. Rep. 2008; 25: 905
- 3b Weissman KJ, Müller R. Nat. Prod. Rep. 2010; 27: 1276
- 4 So far, only one total synthesis of the ajudazols has been reported, see: Essig S, Bretzke S, Müller R, Menche D. J. Am. Chem. Soc. 2012; 134: 19362
- 5 Kunze B, Jansen R, Höfle G, Reichenbach H. J. Antibiot. 2004; 57: 151
- 7a Wallace DC. Science 1999; 283: 1482
- 7b Leonard JV, Schapira AH. Lancet 2000; 355: 299
- 7c Leonard JV, Schapira AH. Lancet 2000; 355: 389
- 7d Smeitink J, van den Heuvel L, DiMauro S. Nat. Rev. Genet. 2001; 2: 342
- 8a Ritzau RV. M, Fleck WF, Gutsche W, Dornberger K, Gräfe U. J. Antibiot. 1997; 50: 791
- 8b Dethoup T, Manoch L, Kijjoa A, Pinto M, Gales L, Damas AM, Silva AM. S, Eaton G, Herz W. J. Nat. Prod. 2007; 70: 1200
- 8c van der Merwe KJ, Steyn PS, Fourie L, Scott DB, Theron JJ. Nature 1965; 205: 1112
- 8d Frick W, Hofmann J, Fischer H, Schmidt RR. Carbohydr. Res. 1991; 210: 71
- 9a Liu H, Li C.-J, Yang J.-Z, Ning N, Si Y.-K, Li L, Chen N.-H, Zhao Q. J. Nat. Prod. 2012; 75: 677
- 9b Xu L, He Z, Xue J, Chen X, Wie X. J. Nat. Prod. 2010; 73: 885
- 9c Kornsakulkarn J, Saepua S, Komwijit S, Rachtawee P, Thongpanchang C. Tetrahedron 2014; 70: 2129
- 9d Isaka M, Yangchum A, Intamas S, Kocharin K, Gareth Jones EB, Kongsaeree P, Prabpai S. Tetrahedron 2009; 65: 4396
- 9e Jeon J.-e, Julianti E, Oha H, Park W, Oh D.-C, Oh K.-B, Shin J. Tetrahedron Lett. 2013; 54: 3111
- 9f Omar M, Matsuo Y, Maeda H, Saito Y, Tanaka T. Org. Lett. 2014; 16: 1378
- 10a Mori K, Takaishi H. Tetrahedron 1989; 45: 1639
- 10b Hentemann MF, Allen MJ. G, Danishefsky S. Angew. Chem. Int. Ed. 2000; 39: 1937
- 10c Herzner H, Palmacci ER, Seeberger PH. Org. Lett. 2002; 4: 2965
- 10d Phung AN, Zannetti MT, Whited G, Fessner W.-D. Angew. Chem. Int. Ed. 2003; 42: 4821
- 11a Donner C, Gill M, Tewierik L. Molecules 2004; 9: 498
- 11b Birkett S, Ganame D, Hawkins BC, Meiries S, Quach T, Rizzacasa MA. Org. Lett. 2011; 13: 1964
- 11c Birkett S, Ganame D, Hawkins BC, Meiries S, Quach T, Rizzacasa MA. J. Org. Chem. 2013; 78: 116
- 12a Hobson SJ, Parkin A, Marquez R. Org. Lett. 2008; 10: 2813
- 12b Egan BA, Paradowski M, Thomas LH, Marquez R. Org. Lett. 2011; 13: 2086
- 12c Egan BA, Paradowski M, Thomas LH, Marquez R. Tetrahedron 2011; 67: 9700
- 13 Hashmi AS. K, Bechem B, Loos A, Hamzic M, Rominger F, Rabaa H. Aust. J. Chem. 2014; 67: 481
- 14a Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
- 14b Fujita M, Wakita M, Sugimura T. Chem. Commun. 2011; 47: 3983
- 14c Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
- 15 In contrast to this work, the group of Fujita has only studied formation of syn-hydroxyl protected isochromanones from E-alkenes of type 17a. Z-Configured alkenes and were not studied and also isobenzofuranones were only obtained in low yields: see ref. 14.
- 16a Yue J.-M, Xu J, Zhao Y, Sun H.-D. J. Nat. Prod. 1997; 60: 1031
- 16b Rahman MM, Gray AI. Phytochemistry 2005; 66: 1601
- 16c Ding G, Liu S, Guo L, Zhou Y, Che Y. J. Nat. Prod. 2008; 71: 615
- 17a Wang L, Li P, Menche D. Angew. Chem. Int. Ed. 2010; 49: 9270
- 17b Wang L, Menche D. Angew. Chem. Int. Ed. 2012; 51: 9425
- 17c Dieckmann M, Menche D. Org. Lett. 2013; 15: 228
- 17d Debnar T, Dreisigacker S, Menche D. Chem. Commun. 2013; 49: 725
- 17e Tang B, Wang L, Menche D. Synlett 2013; 24: 625
- 17f Essig S, Menche D. Pure Appl. Chem. 2013; 85: 1103
- 17g Herkommer D, Schmalzbauer B, Menche D. Nat. Prod. Rep. 2014; 31: 456
- 17h Herkommer D, Thiede S, Wosniok PR, Dreisigacker S, Tian M, Debnar T, Irschik H, Menche D. J. Am. Chem. Soc. 2015; 137: 4086
- 18 In agreement with previous reports on openings of cyclic iodonium ions as well as epoxides, the formation of the six-membered ring is described as an endo-process, see for example, ref. 14 or: Nicolaou KC, Prasad CV. C, Somers PK, Hwang CK. J. Am. Chem. Soc. 1989; 111: 5330
- 19a Corey E, Shibasaki M, Knolle J. Tetrahedron Lett. 1977; 1625
- 19b Garratt DG, Ryan MD, Beaulieu P. J. Org. Chem. 1979; 45: 839
- 19c Bartlett PA, Gonzales FB. Org. Synth. 1986; 64: 175
- 19d Reich SH, Melnick M, Pino MJ, Fuhry MA. M, Trippe AJ, Appelt K, Davies JF. II, Wu B.-W, Musick L. J. Med. Chem. 1996; 39: 2781
- 19e Ma S, Lu L. J. Org. Chem. 2005; 70: 7629
- 20a Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
- 20b Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
- 20c Hennecke U. Chem. Asian J. 2012; 7: 456
- 20d Nolsøe JM. J, Hansen TV. Eur. J. Org. Chem. 2014; 3051
- 21 Clayden J, Mitjans D, Youssef LH. J. Am. Chem. Soc. 2002; 124: 5266
- 22 Offermann DA, McKendrick JE, Sejberg JJ. P, Mo B, Holdom MD, Helm BA, Leatherbarrow RJ, Beavil AJ, Sutton BJ, Spivey AC. J. Org. Chem. 2012; 77: 3197
- 23a Chan VS, Bergman RG, Toste FD. J. Am. Chem. Soc. 2007; 129: 15122
- 23b Jithunsa M, Ueda M, Miyata O. Org. Lett. 2011; 13: 518
- 24 The procedure was adapted from: Noguchi H, Shioda T, Chou C.-M, Suginome M. Org. Lett. 2008; 10: 377
- 25 Fairlamb IJ, Marrison LR, Dickinson JM, Lu F.-J, Schmidt JP. Bioorg. Med. Chem. 2004; 12: 4285
- 26 Presumably, the decreased yield for 19a was due to partial ester cleavage under these basic conditions.
- 27 Smith AB, Zheng J. Tetrahedron 2002; 58: 6455
- 28 Besides 20, also unreacted starting material and anti-(1-iodobutyl)isobenzofuran-1(3H)-one (anti-33) were isolated.
- 29 Studies with the corresponding free carboxylic acid proved variable and inconclusive.
- 30 Boronate 24 was obtained by hydroboration of the corresponding terminal alkyne, according to a procedure of Miyaura, see: Ohmura T, Yamamoto Y, Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
- 31 A detailed analysis of further side products to explain the mass balance in the reaction of 25 and 26 (Table 1, Table 2, Table 3, and Table 4) was not carried out. NMR analyses of crude products suggested decomposition of the labile styrene double bond without cyclization and/or aromatic substitution reactions. Intermediate iodinated products could not be isolated, in contrast to the reactions of 19 and 31. The reason for the different stability of the iodinated intermediates remains unclear.
- 32 A reason for the strong influence of light is not clear. Possibly, light leads to a spin-activation.
- 33 Translactonizations under these neutral conditions have not been observed.
- 34 Very recently, an unfavorable 6-endo-iodocyclization has been observed for a sterically highly hindered substrate, see: Schmalzbauer B, Menche D. Org. Lett. 2015; 17: 2956
- 35 In contrast to this method, all other methods for isochromanone systems require initial protection of the hydroxyls (refs. 4 and 10–13) or result in the formation of hydroxyl-protected products (ref. 14).
- 36a Liang H, CiufoliniM A. Angew. Chem. Int. Ed. 2011; 50: 11849
- 36b Parra A, Reboredo S. Chem. Eur. J. 2013; 19: 17244
- 36c Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
- 37a Crawford LA, McNab H, Mount AR, Wharton SI. J. Org. Chem. 2008; 73: 6642
- 37b Heller ST, Sarpong R. Org. Lett. 2010; 12: 4572
- 38 Jithunsa M, Ueda M, Okiko M. Org. Lett. 2011; 13: 518
- 39 Zhang L, Su S, Wu H, Wang S. Tetrahedron 2009; 65: 10022
- 40 Pauli GF, Jaki BU, Lankin DC. J. Nat. Prod. 2005; 68: 133
For reviews on myxobacterial natural products, see:
For examples, see:
For examples, see:
For more specific approaches, see:
For examples, see:
For selected references, see:
For examples, see:
For selected enantioselective iodocyclizations, see ref. 14 as well as:
For reviews on chiral hypervalent iodine reagents, see: