Synlett 2015; 26(20): 2739-2744
DOI: 10.1055/s-0035-1560711
synpacts
© Georg Thieme Verlag Stuttgart · New York

The Rhizosphere Microbiome: A Playground for Natural Product Chemists

Colleen E. Keohane
Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA   Email: wwuest@temple.edu
,
Andrew D. Steele
Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA   Email: wwuest@temple.edu
,
William M. Wuest*
Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA   Email: wwuest@temple.edu
› Author Affiliations
Further Information

Publication History

Received: 11 August 2015

Accepted after revision: 09 September 2015

Publication Date:
22 October 2015 (online)


Dedicated to Prof. Franklin A. Davis, a gentleman and a scholar

Abstract

The threat of antibiotic-resistant bacteria is an ongoing battle that continues to confound scientists and doctors alike. Reinvestigation of past methods has led to the interrogation of natural microbiomes with the goal of identifying the survival mechanisms employed by its local inhabitants. One such example is that of the rhizosphere; home to many microorganisms capable of producing a variety of essential compounds, such as cyclic lipopeptides, siderophores, quorum sensing molecules, and antibiotics. The intricacies of this ongoing battle inspired our synthetic efforts toward a species-specific natural product, promysalin, isolated from the rhizosphere of a rice plant in Sri Lanka. Recently, our group completed the total synthesis, absolute structural assignment, and identified unique bioactivity. These efforts have informed our insights toward its mechanism of action and role within the rhizosphere.

 
  • References

  • 1 Fischbach MA, Walsh CT. Science 2009; 325: 1089
  • 2 Davies J, Davies D. Microbiol. Mol. Biol. Rev. 2010; 74: 417
  • 3 Lewis K. Nat. Rev. Drug Discovery 2013; 12: 371
  • 4 Koehn FE, Carter GT. Nat. Rev. Drug Discovery 2005; 4: 206
  • 5 Lewis K. Nature (London, U.K.) 2012; 485: 439
  • 6 Porras-Alfaro A, Bayman P. Annu. Rev. Phytopathol. 2011; 49: 291
  • 7 Zhang Y, Ruyter-Spira C, Bouwmeester HJ. Curr. Opin. Biotechnol. 2015; 32: 136
  • 8 Mendes R, Garbeva P, Raaijmakers JM. FEMS Microbiol. Rev. 2013; 37: 634
  • 9 Gonzalez-Ruiz A, Gargalianoiz-Kakolyris P, Timerman A, Sarma J, Ramallo VJ. G, Bouylout K, Trostmann U, Pathan R, Hamed K. Adv. Ther. 2015; 32: 496
  • 10 Hamley IW. Chem. Commun. 2015; 51: 8574
  • 11 Gross H, Loper JE. Nat. Prod. Rep. 2009; 26: 1408
  • 12 Raajimakers JM, de Brujin I, de Kock MJ. D. Mol. Plant-Microbe Interact. 2006; 19: 699
  • 13 Hutchinson ML, Tester MA, Gross DC. Mol. Plant-Microbe Interact. 1995; 8: 610
  • 14 de Bruijn I, de Kock MJ. D, de Waard P, van Beek TA, Raaijmakers JM. J. Bacteriol. 2008; 190: 2777
  • 15 Kuiper I, Lagendijk EL, Pickerford R, Derrick JP, Lamers GE. M, Thomas-Oates JE, Lugtenberg BJ. J, Bloemberg GV. Mol. Microbiol. 2004; 51: 97
  • 16 Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI. Clin. Infect. Dis. 2004; 38: 1673
  • 17 Miethke M, Marahiel MA. Microbiol. Mol. Biol. Rev. 2007; 71: 413
  • 18 Leong J. Annu. Rev. Phytopathol. 1986; 24: 187
  • 19 Chiarini L, Tabacchioni S, Bevivino A. Arch. Microbiol. 1993; 160: 68
  • 20 Hohnadel D, Meyer J. J. Bacteriol. 1988; 170: 4865
  • 21 Cox CD, Rinehart KL, Moore ML. Cook J. C. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 4256
  • 22 Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL. A, Albrecht-Gary A. Dalton Trans. 2012; 41: 2820
  • 23 Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Nat. Rev. Microbiol. 2013; 11: 789
  • 24 Phelan VV, Liu W, Pogliano K, Dorrestein PC. Nat. Chem. Biol. 2012; 8: 26
  • 25 Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Annu. Rev. Microbiol. 2013; 67: 43
  • 26 Churchill ME. A, Chen L. Chem. Rev. 2011; 111: 68
  • 27 Wang Y, Newman DK. Environ. Sci. Technol. 2008; 42: 2380
  • 28 Decho AW, Frey RL, Ferry JL. Chem. Rev. 2011; 111: 86
  • 29 Welsh MA, Eibergen NR, Moore JD, Blackwell HE. J. Am. Chem. Soc. 2015; 137: 1510
  • 30 Guo M, Zheng Y, Starks R, Opoku-Temeng C, Ma X, Sintim HO. MedChemComm 2015; 6: 1086
  • 31 Kaufmann GF, Sartorio R, Lee S, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 309
  • 32 Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. Appl. Environ. Microbiol. 2001; 67: 1198
  • 33 Palmer AG, Senechal AC, Mukherjee A, Ane J, Blackwell HE. Chem. Biol. 2014; 9: 1834
  • 34 Raaijmakers JM, Mazzola M. Annu. Rev. Phytopathol. 2012; 50: 403
  • 35 Steenbergen JN, Alder J, Thorne GM, Tally FP. J. Antimicrob. Chemother. 2005; 55: 283
  • 36 Haas D, Defago G. Nat. Rev. Microbiol. 2005; 3: 307
    • 37a Borrero NV, Bai F, Perez C, Duong BQ, Rocca JR, Jin S, Huigens RW. Org. Biomol. Chem. 2014; 12: 881
    • 37b Huigens RW, Garrison AT, Bai F, Abouelhassan Y, Paciaroni NG, Jin S. RSC Adv. 2015; 5: 1120
  • 38 Helaly SE, Kulik A, Zinecker H, Ramachandaran K, Tan GY. A, Imhoff JF, Süssmuth RD, Fiedler H.-P, Sabaranatam V. J. Nat. Prod. 2012; 75: 1018
  • 39 Li W, Santos PE, Matthijs S, Xie G, Busson R, Cornelis P, Rozenski J, De Mot R. Chem. Biol. 2011; 18: 1320
  • 40 Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T. Nucleic Acids Res. 2013; 41: W204
  • 41 Stachelhaus T, Mootz HD, Marahiel MA. Chem. Biol. 1999; 6: 493
  • 42 Steele AD, Knouse KW, Keohane CE, Wuest WM. J. Am. Chem. Soc. 2015; 137: 7314