Synlett 2015; 26(20): 2866-2869
DOI: 10.1055/s-0035-1560660
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free sp3 C–H Functionalization: PABS/I2-Promoted Synthesis of Polysubstituted Oxazole Derivatives from Arylethanones and 2-Amino-2-alkyl/arylacetic Acid

Ting Hu
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
Hao Yan
b   College of Pharmacy, Shaanxi University of Chinese Medicine, Shaanxi Province, 712046, P. R. of China
,
Xingxing Liu
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
Chaoyang Wu
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
Yuxing Fan
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
Jing Huang
c   Department of Chemistry, and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
,
Guosheng Huang*
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 21 July 2015

Accepted after revision: 13 September 2015

Publication Date:
14 October 2015 (online)


Abstract

A nonmetal-catalyzed process for the synthesis of polysubstituted oxazoles from inexpensive and readily available α-amino acids and methyl ketones is established. This reaction is proposed to achieve oxidative cleavage of C(sp3)–H bonds, followed by decarboxylation and annulation. The mild reaction conditions employed in both cases enable the tolerance of a wide range of functional groups as well as high reaction efficiency.

Supporting Information

 
  • References and Notes

  • 1 Wang B, Hansen TM, Weyer L, Wu D, Wang T, Christmann M, Lu Y, Ying L, Engler MM, Cink RD. J. Am. Chem. Soc. 2011; 133: 1506
  • 2 Hopkins CD, Schmitz JC, Chu E, Wipf P. Org. Lett. 2011; 13: 4088
  • 3 Lucas BS, Gopalsamuthiram V, Burke SD. Angew. Chem. Int. Ed. 2007; 46: 769
  • 4 Smith AB, Razler TM, Ciavarri JP, Hirose T, Ishikawa T, Meis RM. J. Org. Chem. 2008; 73: 1192
  • 5 Hass D, Mosrin M, Knochel P. Org. Lett. 2013; 15: 6162
  • 6 Lautens M, Roy A. Org. Lett. 2000; 2: 555
  • 7 Wipf P, Aoyama Y, Benedum TE. Org. Lett. 2004; 6: 3593
  • 8 Wipf P. Chem. Rev. 1995; 95: 2115
  • 9 Davyt D, Serra G. Mar. Drugs 2010; 8: 2755
  • 10 Hoarau C, Kerdaniel AD. F. D, Bracq N, Grandclaudon P, Couture A, Marsais F. Tetrahedron Lett. 2005; 46: 8573
  • 12 Lewis JR. Nat. Prod. Res. 1995; 12: 135
  • 13 Weyrauch JP, Hashmi AS. K, Schuster A, Hengst T, Schetter S, Littmann A, Rudolph M, Hamzic M, Visus J, Rominger F, Frey W, Bats JW. Chem. Eur. J. 2010; 16: 956
  • 14 Pankova AS, Stukalov AY, Kuznetsov MA. Org. Lett. 2015; 17: 1826
  • 15 Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
  • 16 Merkul E, Müller TJ. J. Chem. Commun. 2006; 4817
  • 17 Zhang XX, Teo WT, Chan PW. H. J. Organomet. Chem. 2011; 696: 331
  • 18 Verrier C, Lassalas P, Théveau L, Quéguiner G, Trécourt F, Marsais F, Hoarau C. Beilstein J. Org. Chem. 2011; 7: 1584
  • 19 Yeh VS. C. Tetrahedron 2004; 60: 11995
  • 20 Li YF, Guo FF, Zha ZG, Wang ZZ. Sustainable Chem. Proc. 2013; 1: 8
  • 21 Tang JS, Verkade JG. J. Org. Chem. 1996; 61: 8750
  • 22 Liu X, Cheng R, Zhao FF, Zhang-Negrerie D, Du YF. Org. Lett. 2012; 14: 5480
  • 23 Wan CF, Zhang JT, Wang SJ, Fan JM, Wang ZY. Org. Lett. 2010; 12: 2338
  • 24 Gao QH, Fei Z, Zhu YP, Lian M, Jia FC, Liu MC, She NF, Wu AX. Tetrahedron 2013; 69: 22
  • 25 Huang HW, Ji XC, Wu WQ, Jiang HF. Adv. Synth. Catal. 2013; 355: 170
  • 26 Jiang HF, Huang HW, Cao H, Qi CR. Org. Lett. 2010; 12: 5561
  • 27 Xu ZJ, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
  • 28 Xiang JC, Wang JG, Wang M, Meng XG, Wu AX. Tetrahedron 2014; 70: 7470
    • 29a Keni M, Tepe JJ. J. Org. Chem. 2005; 70: 4211
    • 29b Yoshizumi T, Satoh T, Hirano K, Matsuo D, Orita A, Otera J, Miura M. Tetrahedron Lett. 2009; 50: 3273
  • 30 Typical Procedure for the Preparation of 2,5-Diphenyloxazole A test tube was charged with 1a (0.32 mmol), 2a (0.38 mmol), I2 (2.0 equiv), and PABS (0.5 equiv). Then DMSO (2 mL) was added to the reaction system. The reaction was stirred at 100 °C for 5 h. After cooling to r.t., the solvent diluted with EtOAc (10 mL) and washed with brine (5 mL) and dried over anhydrous Na2SO4. After the solvent was evaporated in vacuo, the residues were purified by column chromatography, eluting with PE–EtOAc to afford pure 3aa as a yellow solid (64 mg, 90%); mp 58–60 °C. 1H NMR (400 MHz, CDCl3): δ = 8.11–8.08 (m, 2 H), 7.70–7.68 (m, 2 H), 7.48–7.39 (m, 6 H), 7.30 (t, J = 7.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 161.02, 151.14, 130.20, 128.81, 128.70, 128.31, 127.91, 127.37, 126.18, 124.08, 123.37. ESI-HRMS: m/z calcd for C15H12NO [M + H]+: 222.0914; found: 222.0916.