Synlett 2015; 26(18): 2537-2540
DOI: 10.1055/s-0035-1560632
letter
© Georg Thieme Verlag Stuttgart · New York

A Nonoxidative Passerini Pathway to α-Ketoamides

Abdelbari Ben Abdessalem
a   Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech- UMR 7652, Universtité Paris-Saclay, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
b   Département de Chimie, Faculté des Sciences de Bizerte, Université de Carthage, Carthage, Tunisia   Email: abderrahim.raoudha@gmail.com
,
Raoudha Abderrahim*
b   Département de Chimie, Faculté des Sciences de Bizerte, Université de Carthage, Carthage, Tunisia   Email: abderrahim.raoudha@gmail.com
,
Laurent El Kaïm*
a   Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech- UMR 7652, Universtité Paris-Saclay, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
› Author Affiliations
Further Information

Publication History

Received: 29 July 2015

Accepted after revision: 24 August 2015

Publication Date:
15 October 2015 (online)


Abstract

The Passerini adducts of cinnamaldehyde derivatives may be efficiently converted into α-ketoamides when heated with a base under microwave conditions.

Supporting Information

 
  • References and Notes

    • 1a Peese K. Drug Discovery Today 2010; 15: 406
    • 1b Nelson DR. Hepatology 2009; 50: 997
  • 2 Lescop C, Herzner H, Siendt H, Bolliger R, Henneböhle M, Weyermann P, Briguet A, Courdier-Fruh I, Erb M, Foster M, Meier T, Magyarb JP, von Sprecher A. Bioorg. Med. Chem. Lett. 2005; 15: 5176
  • 3 Steuer C, Gege C, Fischl W, Heinonen KH, Bartenschlager R, Klein CD. Bioorg. Med. Chem. 2011; 19: 4067
  • 4 Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL. Science 1990; 250: 556

    • For a selection of α-ketoamide synthesis, see:
    • 5a Singh RP, Shreeve JM. J. Org. Chem. 2003; 68: 6063
    • 5b Yang Z, Zhang Z, Meanwell NA, Kadow JF, Wang T. Org. Lett. 2002; 4: 1103
    • 5c Zhu J, Wong H, Zhang Z, Yin Z, Kadow JF, Meanwell NA, Wang T. Tetrahedron Lett. 2005; 46: 3587
    • 5d Wasserman HH, Ho WB. J. Org. Chem. 1994; 59: 4364
    • 5e Wasserman HH, Petersen AK, Xia M. Tetrahedron 2003; 59: 6771
    • 5f Ozawa F, Soyama H, Yanagihara H, Aoyama I, Takino H, Izawa K, Yamamoto T, Yamamoto A. J. Am. Chem. Soc. 1985; 107: 3235
    • 5g Ocain TD, Rich DH. J. Med. Chem. 1992; 35: 451
    • 5h Mupparapu N, Khan S, Battula S, Kushwaha M, Gupta AP, Ahmed QN, Vishwakarma RA. Org. Lett. 2014; 16: 1152
    • 6a Chen JJ, Deshpande SV. Tetrahedron Lett. 2003; 44: 8873
    • 6b Ugi I, Fetzer U. Chem. Ber. 1961; 94: 1116
    • 6c El Kaïm L, Pinot-Périgord E. Tetrahedron 1998; 54: 3799
    • 6d For a review on the Nef reaction of isocyanides see: La SpisaF, Tron GC, El Kaïm L. Synthesis 2014; 46: 829
    • 7a Passerini M. Gazz. Chim. Ital. 1921; 51: 126

    • For reviews, see:
    • 7b Banfi L, Riva R. Org. React. (N. Y.) 2005; 65: 1
    • 7c Kazemizadeh AR, Ramazani A. Curr. Org. Chem. 2012; 16: 418
    • 8a Semple JE, Owens TD, Nguyen K, Levy OE. Org. Lett. 2000; 2: 2769
    • 8b Banfi L, Guanti G, Riva R. Chem. Commun. 2000; 985
    • 8c Owens TD, Araldi G.-L, Nutt RF, Semple JE. Tetrahedron Lett. 2001; 42: 6271
  • 10 Grassot JM, Masson G, Zhu J. Angew. Chem. Int. Ed. 2008; 47: 947
  • 11 Yu H, Gai T, Sun WL, Zhang MS. Chin. Chem. Lett. 2011; 22: 379
  • 12 Dos Santos A, El Kaïm L. Synlett 2014; 25: 1901
  • 13 Cordier M, Dos Santos A, El Kaïm L, Narboni N. Chem. Commun. 2015; 51: 6411
  • 14 Typical Procedure for 2a: The Passerini adduct 1a (102 mg, 0.338 mmol) and Cs2CO3 (1.0 equiv, 110 mg) were suspended in trifluoroethanol (TFE; 3.0 mL) in a 10-mL reaction glass vial containing a magnetic stir bar. The vial was flashed with argon, sealed and irradiated with stirring (CEM Discover Microwave. Settings: 140 °C, 150 W) during 15 min. Upon completion of the reaction time, the vial was cooled to r.t. The reaction mixture was diluted with H2O (30 mL) and extracted with CH2Cl2 (3 × 15 mL). Purification by flash column chromatography on silica gel (CH2Cl2–petroleum ether, 20:80) gave 2a as a white solid (mp 86.0–86.5 °C) isolated in 93% yield (81 mg); Rf 0.6 (CH2Cl2–petroleum ether, 80:20). 1H NMR (400 MHz, CDCl3): δ = 7.26–7.30 (m, 2 H, H-Ar), 7.17–7.22 (m, 3 H, H-Ar), 6.82 (d, J = 6.3 Hz, 1 H, NH), 3.67–3.77 (m, 1 H), 3.28 (t, J = 7.5 Hz, 2 H), 2.93 (t, J = 7.5 Hz, 2 H), 1.87–1.91 (m, 2 H, H-Cy), 1.60–1.76 (m, 3 H, H-Cy), 1.32–1.42 (m, 2 H, H-Cy), 1.13–1.25 (m, 3 H, H-Cy). 13C NMR (100.6 MHz, CDCl3): δ = 198.8, 159.0, 140.5, 128.6, 128.5, 126.3, 48.4, 38.4, 32.7, 29.2, 25.4, 24.8. HRMS: m/z calcd for C16H21NO2: 259.1572; found: 259.1564. IR (CHCl3): 3398, 2938, 2858, 1720, 1682, 1522, 1498, 1453, 1373, 1116, 892 cm–1.
    • 15a Bossio R, Marcos CF, Marcaccini S, Pepino R. Tetrahedron Lett. 1997; 38: 2519
    • 15b Bossio R, Marcos CF, Marcaccini S, Pepino R. Synthesis 1997; 1389
    • 15c Bossio R, Marcos CF, Marcaccini S, Pepino R. Heterocycles 1997; 1589