Synlett 2016; 27(08): 1287-1291
DOI: 10.1055/s-0035-1560600
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Base and Brønsted Base Dual-Catalyzed Formal [4+3] Cyclo­addition Reaction: Synthesis of Aza-Spirocycloheptane Oxindole

Jin-Yu Liu
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: xupf@lzu.edu.cn
,
Hong Lu
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: xupf@lzu.edu.cn
,
Chen-Guang Li
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: xupf@lzu.edu.cn
,
Yong-Min Liang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: xupf@lzu.edu.cn
,
Peng-Fei Xu*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: xupf@lzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 10 November 2015

Accepted after revision: 29 December 2015

Publication Date:
08 February 2016 (online)


Abstract

An intermolecular, quaternary carbon center forming [4+3] cycloaddition reaction catalyzed by Lewis base and Brønsted base has been successfully developed. The dual catalysis exhibits a superior ability to enable a previously challenging reaction, and the corresponding quaternary aza-spirocycloheptane oxindole scaffolds are efficiently synthesized with moderate to high yields.

Supporting Information

 
  • References and Notes


    • For the several recent reviews, see:
    • 1a Malkov AV, Kočovský P. Eur. J. Org. Chem. 2007; 29
    • 1b Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 1c Gawronski J, Wascinska N, Gajewy J. Chem. Rev. 2008; 108: 5227
    • 1d Denmark SE. Chimia 2008; 62: 37
    • 1e Benaglia M, Guizzetti S, Pignataro L. Coord. Chem. Rev. 2008; 252: 492
    • 1f Freund M, Schenker S, Zamfir A, Tsogoeva SB. Curr. Org. Chem. 2011; 15: 2282
    • 2a Han X, Zhong F, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 767
    • 2b Steurer M, Jensen KL, Worgull D, Jørgensen KA. Chem. Eur. J. 2012; 18: 76
    • 2c Marco-Martinez J, Marcos V, Reboredo S, Filippone S, Martin N. Angew. Chem. Int. Ed. 2013; 52: 5115
    • 2d Liu Y.-L, Wang X, Zhao Y.-L, Zhu F, Zeng X.-P, Chen L, Wang C.-H, Zhao X.-L, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
    • 2e Wang D, Lei Y, Wei Y, Shi M. Chem. Eur. J. 2014; 20: 15325
    • 2f Henry CE, Xu QH, Fan YC, Martin TJ, Belding L, Dudding T, Kwon O. J. Am. Chem. Soc. 2014; 136: 11890
    • 2g Wei F, Huang H.-Y, Zhong N.-J, Gu C.-L, Wang D, Liu L. Org. Lett. 2015; 17: 1688
    • 3a Zhang XN, Deng HP, Huang L, Wei Y, Shi M. Chem. Commun. 2012; 48: 8664
    • 3b Ziegler DT, Riesgo L, Ikeda T, Fujiwara Y, Fu GC. Angew. Chem. Int. Ed. 2014; 53: 13183
    • 3c Han X, Yao W, Wang T, Tan YR, Yan Z, Kwiatkowski J, Lu Y. Angew. Chem. Int. Ed. 2014; 53: 5643
    • 3d Kramer S, Fu GC. J. Am. Chem. Soc. 2015; 137: 3803
    • 4a Guo H, Xu Q, Kwon O. J. Am. Chem. Soc. 2009; 131: 6319
    • 4b Zheng S, Lu X. Tetrahedron Lett. 2009; 50: 4532
    • 4c Na R, Jing C, Xu Q, Jiang H, Wu X, Shi J, Zhong J, Wang M, Benitez D, Tkatchouk E, Goddard WA III, Guo H, Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
    • 4d Hu J, Dong W, Wu X.-Y, Tong X. Org. Lett. 2012; 14: 5530
    • 4e Liu J, Liu H, Na R, Wang G, Li Z, Yu H, Wang M, Zhong J, Guo H. Chem. Lett. 2012; 41: 218
    • 4f Zhang L, Liu H, Qiao G, Hou Z, Liu Y, Xiao Y, Guo H. J. Am. Chem. Soc. 2015; 137: 4316
    • 5a Wurz RP, Fu GC. J. Am. Chem. Soc. 2005; 127: 12234
    • 5b Xiao H, Chai Z, Wang HF, Wang XW, Cao DD, Liu W, Lu YP, Yang YQ, Zhao G. Chem. Eur. J. 2011; 17: 10562
    • 5c Zhong F, Han X, Wang Y, Lu Y. Chem. Sci. 2012; 3: 1231
    • 5d Xiao H, Chai Z, Cao D, Wang H, Chen J, Zhao G. Org. Biomol. Chem. 2012; 10: 3195
    • 5e Takizawa S, Arteaga FA, Yoshida Y, Suzuki M, Sasai H. Asian J. Org. Chem. 2014; 3: 412

      For the several recent reviews, see:
    • 6a Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 6b Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
    • 6c Fan YC, Kwon O. Chem. Commun. 2013; 49: 11588
    • 6d Wang ZM, Xu XZ, Kwon O. Chem. Soc. Rev. 2014; 43: 2927
    • 7a Kumar K, Kapoor R, Kapur A, Ishar MP. S. Org. Lett. 2000; 2: 2023
    • 7b Zheng S, Lu X. Org. Lett. 2009; 11: 3978

      For recent reviews, see:
    • 8a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138 ; Angew. Chem. 2004, 116, 5248
    • 8b Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560 ; Angew. Chem. 2008, 120, 1584
    • 8c Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 8d Alemán J, Cabrera S. Chem. Soc. Rev. 2013; 42: 774
    • 8e Du ZT, Shao ZH. Chem. Soc. Rev. 2013; 42: 1337
    • 8f Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346
    • 9a Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928
    • 9b Avemaria F, Vanderheiden S, Bräse S. Tetrahedron 2003; 59: 6785
    • 9c Schammel AW, Chiou G, Garg NK. Org. Lett. 2012; 14: 4556
    • 9d Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
    • 10a Yang QQ, Xiao C, Lu LQ, An J, Tan F, Li BJ, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
    • 10b Yang QQ, Wang Q, An J, Chen JR, Lu LQ, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
    • 10c Huang H, Yang Y, Zhang X, Zeng W, Liang Y. Tetrahedron Lett. 2013; 54: 6049
    • 10d Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603

      For selected examples, see:
    • 11a Wang Y, Han R.-G, Zhao Y.-L, Yang S, Xu P.-F, Dixon DJ. Angew. Chem. Int. Ed. 2009; 48: 9834 ; Angew. Chem. 2009, 121, 10018
    • 11b Wang Y, Yu T.-Y, Zhang H.-B, Luo Y.-C, Xu P.-F. Angew. Chem. Int. Ed. 2012; 51: 12339
    • 11c Zhao Y.-L, Wang Y, Hu X.-Q, Xu P.-F. Chem. Commun. 2013; 49: 7555
    • 11d Tian L, Xu G.-Q, Li Y.-H, Liang Y.-M, Xu P.-F. Chem. Commun. 2013; 49: 7213
    • 11e Gu Y, Wang Y, Yu T.-Y, Liang Y.-M, Xu P.-F. Angew. Chem. Int. Ed. 2014; 53: 14128
    • 11f Lu H, Lin J.-B, Liu J.-Y, Xu P.-F. Chem. Eur. J. 2014; 20: 11659
    • 11g Yu T.-Y, Wang Y, Xu P.-F. Acta Chim. Sin. (Chin. Ed.) 2014; 72: 845
  • 12 When we have accomplished this work, Chen’s group reported the similar reaction with equivalent phosphine and ten equivalents of Brønsted base, see: Zhan G, Shi M.-L, He Q, Du W, Chen Y.-C. Org. Lett. 2015; 17: 4750

    • General procedure and the analytical data of MBH carbonate 1 and N-(o-chloromethyl)aryl amides 2, see:
    • 13a Feng J, Lu X, Kong A, Han X. Tetrahedron 2007; 63: 6035
    • 13b Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603
  • 14 For more details, see the Supporting Information.
  • 15 CCDC 1425006 (3n) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam. ac.uk/data_request/cif.
    • 16a Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
    • 16b Pellegrino S, Ruscica M, Magni P, Vistoli G, Gelmi ML. Bioorg. Med. Chem. 2013; 21: 5470
    • 16c Zhou F, Cheng G.-J, Yang W, Long Y, Zhang S, Wu Y.-D, Zhang X, Cai Q. Angew. Chem. Int. Ed. 2014; 53: 9555
    • 16d El Bouakher A, Massip S, Jarry C, Troin Y, Abrunhosa-Thomas I, Guillaumet G. Eur. J. Org. Chem. 2015; 556
    • 16e Nibbs AE, Montgomery TD, Zhu Y, Rawal VH. J. Org. Chem. 2015; 80: 4928