Synlett 2015; 26(20): 2795-2800
DOI: 10.1055/s-0035-1560586
cluster
© Georg Thieme Verlag Stuttgart · New York

Directed Functionalization of Cyano-Substituted Furans and Thiophenes with TMPMgCl·LiCl

Fernanda M. dos Santos
a   Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s ̸ n, 14.040-903, Ribeirão Preto – SP, Brazil   Email: gclososki@fcfrp.usp.br
,
João H. C. Batista
a   Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s ̸ n, 14.040-903, Ribeirão Preto – SP, Brazil   Email: gclososki@fcfrp.usp.br
,
Ricardo Vessecchi
b   Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto – SP, Brazil
,
Giuliano C. Clososki*
a   Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s ̸ n, 14.040-903, Ribeirão Preto – SP, Brazil   Email: gclososki@fcfrp.usp.br
b   Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto – SP, Brazil
› Author Affiliations
Further Information

Publication History

Received: 03 August 2015

Accepted after revision: 13 October 2015

Publication Date:
30 October 2015 (online)


Dedicated to Prof. João L. Callegari Lopes in the occasion of his 70th birthday

Abstract

A number of novel difunctionalized furans and thiophenes has been prepared by the reaction of the cyano-substituted substrates with TMPMgCl·LiCl followed by the reaction with electrophiles. The crucial metalation step takes place under mild conditions allowing the isolation of desired derivatives in reasonable to good yields.

Supporting Information

 
  • References and Notes

    • 1a Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1b Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
    • 1c Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 2a Fatiadi AJ In Preparation and Synthetic Applications of Cyano Compounds . Patai S, Rappaport Z. Wiley; New York: 1983
    • 2b Carey FA, Sundberg RJ In Advanced Organic Chemistry, Part B: Reactions and Synthesis . Springer; New York: 2007. 5th ed.
    • 3a Kadaba PK. Synthesis 1973; 71
    • 3b Diana GD, Cutcliffe D, Volkots DL, Mallamo JP, Bailey TR, Vescio N, Oglesby RC, Nitz TJ, Wetzel J, Giranda V, Pevear DC, Dutko FJ. J. Med. Chem. 1993; 36: 3240
    • 3c Shie J.-J, Fang J.-M. J. Org. Chem. 2003; 68: 1158
    • 3d Khanna IK, Weier RM, Yu Y, Xu XD, Koszyk FJ, Collins PW, Koboldt CM, Veenhuizen AW, Perkins WE, Casler JJ, Masferrer JL, Zhang YY, Gregory SA, Seibert K, Isakson PC. J. Med. Chem. 1997; 40: 1634
    • 3e Witte H, Seeliger W. Justus Liebigs Ann. Chem. 1974; 1009
    • 3f Chihiro M, Nagamoto H, Takemura I, Kitano K, Komatsu H, Sekiguchi K, Tabusa F, Mori T, Tominaga M, Yabuuchi Y. J. Med. Chem. 1995; 38: 353
    • 3g Gu X.-H, Wan X.-Z, Jiang B. Bioorg. Med. Chem. Lett. 1999; 9: 569
    • 4a Krizan TD, Martin JC. J. Org. Chem. 1982; 47: 2681
    • 4b Krizan TD, Martin JC. J. Am. Chem. Soc. 1983; 105: 6155
    • 4c Fraser RR, Savard S. Can. J. Chem. 1986; 64: 621
    • 4d Pletnev AA, Tian Q, Larock RC. J. Org. Chem. 2002; 67: 9276
    • 4e Cailly T, Fabis F, Lemaître S, Bouillon A, Rault S. Tetrahedron Lett. 2005; 46: 135
    • 4f Snieckus V. Chem. Rev. 1990; 90: 879
    • 5a Naka H, Uchiyama M, Matsumoto Y, Wheatley AE. H, McPartlin M, Morey JV, Kondo Y. J. Am. Chem. Soc. 2007; 129: 1921
    • 5b Wunderlich SH, Kienle M, Knochel P. Angew. Chem. Int. Ed. 2009; 48: 7256
    • 5c Haasa D, Hammann JM, Moyeux A, Cahiez G, Knochel P. Synlett 2015; 26: 1515
    • 5d Bentabed-Ababsa G, Ely SC. S, Hesse S, Nassar E, Chevallier F, Nguyen TT, Derdour A, Mongin F. J. Org. Chem. 2010; 75: 839
    • 5e Usui S, Hashimoto Y, Morey JV, Wheatley AE. W, Uchiyama M. J. Am. Chem. Soc. 2007; 129: 15102
    • 5f Bresser T, Mosrin M, Monzon G, Knochel P. J. Org. Chem. 2010; 75: 4686
    • 5g Uchiyama M, Miyoshi T, Kajihara Y, Sakamoto T, Otani Y, Ohwada T, Kondo Y. J. Am. Chem. Soc. 2002; 124: 8514
    • 5h Knochel P, Diène C. C. R. Chim. 2011; 14: 842
    • 5i Jaric M, Haag BA, Manolikakes SM, Knochel P. Org. Lett. 2011; 13: 2306
    • 6a Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
    • 6b Ren H, Krasovskiy A, Knochel P. Org. Lett. 2004; 6: 4215
    • 6c Hauk DH, Lang S, Murso A. Org. Process Res. Dev. 2006; 10: 733
    • 6d Nishimura RH. V, Toledo FT, Lopes JL. C, Clososki GC. Tetrahedron Lett. 2013; 54: 287
    • 6e Nishimura RH. V, Murie VE, Soldi R, Clososki GC. Synthesis 2015; 47: 1455
    • 7a Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 7b Clososki GC, Rohbogner CJ, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7681
    • 7c Rohbogner CJ, Clososki GC, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 1503
    • 7d Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
    • 7e Klatt T, Roman DS, León T, Knochel P. Org. Lett. 2014; 16: 1232
    • 7f Haas D, Mosrin M, Knochel P. Org. Lett. 2013; 15: 6162
    • 7g Klatt T, Markiewicz JT, Samann C, Knochel P. J. Org. Chem. 2014; 79: 4253
  • 8 For some applications of mixed lithium–magnesium amides in the metalation of aromatic and heterocyclic nitriles, see ref. 5h–i and 7b–d.
    • 9a Ho J, Coote ML, Franco-Pérez M, Gómez-Balderas R. J. Phys. Chem. A 2010; 114: 11992
    • 9b Ho J, Coote ML. Theor. Chem. Acc. 2010; 125: 3
    • 10a Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
    • 10b Kadiyala RR, Tilly D, Nagaradja E, Roisnel T, Matulis VE, Ivashkevich OA, Halauko YS, Chevallier F, Gros PC, Mongin F. Chem. Eur. J. 2013; 19: 7944
    • 10c Chevallier F, Halauko YS, Pecceu C, Nassar IF, Dam TU, Roisnel T, Matulis VE, Ivashkevich OA, Mongin F. Org. Biomol. Chem. 2011; 9: 4671
    • 10d Chevallier F, Blin T, Nagaradja E, Lassagne F, Roisnel T, Halauko YS, Matulis VE, Ivashkevich OA, Mongin F. Org. Biomol. Chem. 2012; 10: 4878
    • 10e Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
    • 10f Batista JH. C, Santos FM, Bozzini LA, Vessecchi R, Oliveira AR. M, Clososki GC. Eur. J. Org. Chem. 2015; 967
    • 10g Amaral MF. Z. J, Baumgartner AA, Vessecchi R, Clososki GC. Org. Lett. 2015; 17: 238
    • 11a Becke AD. J. Chem. Phys. 1997; 107: 8554
    • 11b Raghavachari K, Binkley JS, Seeger R, Pople JA. J. Chem. Phys. 1980; 72: 650
  • 12 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA. Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03 . Gaussian; Wallingford CT: 2003
  • 13 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 14 Synthesis of 3c In a flame-dried flask flushed with nitrogen, substrate 1c (93 mg, 1 mmol) was dissolved in THF (1.5 mL). TMPMgCl·LiCl (1.0 M in THF, 1.8 mL, 1.8 mmol) was added dropwise at 25 °C, and the mixture was stirred for 2 h. After that, a solution of iodine (507.6 mg, 2 mmol) in THF (2 mL) was added dropwise at 0 °C, and the reaction was stirred for 1 h at 25 °C. The reaction mixture was quenched with sat. aq NaHSO3 solution (5 mL), extracted with EtOAc (3 × 15 mL), and dried over anhydrous MgSO4. After the filtration, solvent was evaporated in vacuo. Purification by flash-chromatography column (hexane–EtOAc, 95:5) furnished the product 3c as a yellow solid (197 mg, 90%); mp 67–69 °C. 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 2.0 Hz, 1 H), 6.60 (d, J = 2.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 148.9, 113.7, 113.2, 108.3, 100.2. IR (KBr): 3425, 3143, 2233, 1485, 1344, 1160, 1018, 877, 747, 629 cm–1. MS (EI, 70 eV): m/z (%) = 219 (43) [M+], 190 (7), 127 (29), 64 (100). ESI-HRMS: m/z calcd for C5H3INO [M + H]+: 219.9259; found: 219.9258.
    • 15a Negishi E, Bagheri V, Chatterjee S, Luo FT. Tetrahedron Lett. 1983; 24: 5181
    • 15b Grey RA. J. Org. Chem. 1984; 49: 2288
    • 16a De Crisci AG, Chung KL, Solis-Ibarra AG, Waymouth RM. Organometallics 2013; 32: 2257
    • 16b Yi J, Lu X, Sun Y-Y, Xiao B, Liu L. Angew. Chem. Int. Ed. 2013; 52: 12409
    • 16c Peng G, Quin X, Min S. Synlett 2013; 24: 1255
    • 16d Binder JT, Cordier CJ, Fu GC. J. Am. Chem. Soc. 2012; 134: 17003
    • 16e Xufing L, Jian S, Yanyan X, Delain L. Organometallics 2011; 30: 3284
    • 16f Amaral MF. Z. J, Deliberto LA, Souza CR, Naal RM. Z. G, Naal Z, Clososki GC. Tetrahedron 2014; 70: 3249
    • 16g Amaral MF. Z. J, Callejon DR, Riul TB, Baruffi MD, Toledo FT, Lopes NP, Clososki GC. J. Braz. Chem. Soc. 2014; 25: 1907
    • 17a Dong Z, Clososki GC, Wunderlich SH, Unsinn A, Li JS, Knochel P. Chem. Eur. J. 2009; 15: 457
    • 17b Unsinn A, Rohbogner CJ, Knochel P. Adv. Synth. Catal. 2013; 335: 1553
    • 18a Walla P, Kappe CO. Chem. Commun. 2004; 564
    • 18b Zhu L, Wehmeyer RM, Rieke RD. J. Org. Chem. 1991; 56: 1445
    • 18c Wunderlich SH, Knochel P. Org. Lett. 2008; 10: 4705
    • 18d Mosrin M, Monzon G, Bresser T, Knochel P. Chem. Commun. 2009; 5615
  • 19 Synthesis of 3o In a flame-dried vial flushed with nitrogen, substrate 1d (109 mg, 1 mmol) was dissolved in THF (1.5 mL), and a solution of ZnCl2 (1.0 M in THF, 1 mL, 1 mmol) was added. The mixture was stirred for 10 min at 25 °C then TMPMgCl·LiCl (1.0 M in THF, 1.2 mL, 1.2 mmol) was added dropwise, and the mixture was heated for 20 min at 60 °C in a microwave reactor. After that, Pd(PPh3)4 (58 mg, 0.05 mmol) in THF (0.5 mL) and 1-chloro-4-iodobenzene (330 mg, 1.4 mmol) in THF (0.5 mL) were added to the reaction mixture which was then heated for 40 min at 60 °C in the microwave reactor. The mixture was then cooled to 25 °C, quenched with sat. aq. NH4Cl solution (5 mL), extracted with EtOAc (3 × 15 mL), and dried over anhydrous MgSO4. After the filtration, solvent was evaporated in vacuo. Purification by flash-chromatography column (hexanes–EtOAc, 95:5) furnished the product 3o as a white solid (186 mg, 85%); mp 83–85 °C. 1H NMR (400 MHz, CDCl3): δ = 7.69 (m, 2 H), 7.45 (m, 2 H), 7.35 (d, J = 5.3 Hz, 1 H), 7.29 (d, J = 5.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 152.4, 135.9, 130.5, 129.8, 129.5, 129.0, 125.8, 115.64, 106.50. MS (EI, 70 eV): m/z (%) = 219 (100) [ M+], 184 (43), 140 (41), 113 (7), 92 (6), 75 (8), 58 (12), 45 (12). ESI-HRMS: m/z calcd for C11H7ClNSNa [M + Na]+: 241.9807; found: 241.9800.