Synthesis 2016; 48(23): 4149-4154
DOI: 10.1055/s-0035-1560564
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Erythrochelin: A Hydroxamate-Type Siderophore from Saccharopolyspora erythraea

Michiyasu Nakao
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   eMail: ssano@tokushima-u.ac.jp
,
Shunsuke Tsuji
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   eMail: ssano@tokushima-u.ac.jp
,
Syuji Kitaike
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   eMail: ssano@tokushima-u.ac.jp
,
Shigeki Sano*
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   eMail: ssano@tokushima-u.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. Juli 2016

Accepted after revision: 19. Juli 2016

Publikationsdatum:
24. August 2016 (online)


Abstract

Erythrochelin, a hydroxamate-type siderophore produced by Saccharopolyspora erythraea, is synthesized for the first time. A key building block of erythrochelin containing the 2,5-diketopiperazine ring is prepared by intramolecular cyclization of the corresponding dipeptide precursor derived from two kinds of protected δ-N-hydroxy-l-ornithines. Consecutive condensation of the building block with protected d-serine and protected δ-N-hydroxy-d-ornithine, followed by deprotection, furnishes erythrochelin.

Supporting Information

 
  • References

    • 1a Robbel L, Knappe TA, Linne U, Xie X, Marahiel MA. FEBS J. 2010; 277: 663
    • 1b Lazos O, Tosin M, Slusarczyk AL, Boakes S, Cortés J, Sidebottom PJ, Leadlay PF. Chem. Biol. 2010; 17: 160
    • 2a Howard DH. Clin. Microbiol. Rev. 1999; 12: 394
    • 2b Renshaw JC, Robson GD, Trinci AP. J, Wiebe MG, Livens FR, Collison D, Taylor RJ. Mycol. Res. 2002; 106: 1123
    • 2c Saha R, Saha N, Donofrio RS, Bestervelt LL. J. Basic Microbiol. 2013; 53: 303
    • 2d Raymond KN, Allred BE, Sia AK. Acc. Chem. Res. 2015; 48: 2496
    • 3a Xu W, Li L, Du L, Tan N. Acta Biochim. Biophys. Sin. 2011; 43: 757
    • 3b Licona-Cassani C, Marcellin E, Quek L.-E, Jacob S, Nielsen LK. Anton. Leeuw. Int. J. G. 2012; 102: 493
  • 4 Oves-Costales D, Challis GL In Drug Discovery from Natural Products, RSC Drug Discovery Series No. 25 . Genilloud O, Vicente F. The Royal Society of Chemistry; Cambridge: 2012: 145
  • 5 Robbel L, Helmetag V, Knappe TA, Marahiel MA. Biochemistry 2011; 50: 6073
    • 6a Umezawa H, Aoyagi T, Ogawa K, Obata T, Iinuma H, Naganawa H, Hamada M, Takeuchi T. J. Antibiot. 1985; 38: 1813
    • 6b Aoyagi T, Wada T, Iinuma H, Ogawa K, Kojima F, Nagai M, Kuroda H, Obayashi A, Umezawa H. J. Appl. Biochem. 1985; 7: 388
  • 7 Dolence EK, Miller MJ. J. Org. Chem. 1991; 56: 492
    • 8a Ahmad M. Ph.D. Thesis . University of Warwick; Coventry UK: 2011
    • 8b Kodani S, Komaki H, Suzuki M, Kobayakawa F, Hemmi H. Biometals 2015; 28: 791
  • 9 Chen Y, Ntai I, Ju K.-S, Unger M, Zamdborg L, Robinson SJ, Doroghazi JR, Labeda DP, Metcalf WW, Kelleher NL. J. Proteome Res. 2012; 11: 85
  • 10 Atkin CL, Neilands JB. Biochemistry 1968; 7: 3734
    • 11a Isowa Y, Takashima T, Ohmori M, Kurita H, Sato M, Mori K. Bull. Chem. Soc. Jpn. 1972; 45: 1467
    • 11b Fujii T, Hatanaka Y. Tetrahedron 1973; 29: 3825
    • 11c Widmer J, Keller-Schierlein W. Helv. Chim. Acta 1974; 57: 1904
    • 11d Lee BH, Gerfen GJ, Miller MJ. J. Org. Chem. 1984; 49: 2418
    • 11e Nakao M, Fukayama S, Kitaike S, Sano S. Heterocycles 2015; 90: 1309
  • 12 Frederick CB, Szaniszlo PJ, Vickrey PE, Bentley MD, Shive W. Biochemistry 1981; 20: 2432
  • 13 Frederick CB, Bentley MD, Shive W. Biochem. Biophys. Res. Commun. 1982; 105: 133
    • 14a Burt WR. Infect. Immun. 1982; 35: 990
    • 14b Aniya Y, Ohtani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanishi H, Taira J. Free Radical Biol. Med. 2000; 28: 999
    • 14c Bertrand S, Larcher G, Landreau A, Richomme P, Duval O, Bouchara J.-P. Biometals 2009; 22: 1019
    • 14d Tseng W.-T, Hsu Y.-W, Pan T.-M. Pharm. Biol. 2016; 54: 1434
    • 15a Hantke K. Mol. Gen. Gent. 1983; 191: 301
    • 15b Simionato AV. C, de Souza GD, Rodrigues-Filho E, Glick J, Vouros P, Carrilho E. Rapid Commun. Mass Spectrom. 2006; 20: 193
  • 16 Bertrand S, Bouchara J.-P, Venier M.-C, Richomme P, Duval O, Larcher G. Med. Mycol. 2010; 48: S98
    • 17a Borthwick AD. Chem. Rev. 2012; 112: 3641
    • 17b Giessen TW, Marahiel MA. Front. Microbiol. 2015; 6: 785
    • 17c Sano S, Nakao M. Heterocycles 2015; 91: 1349
    • 18a Spasojević I, Boukhalfa H, Stevens RD, Crumbliss AL. Inorg. Chem. 2001; 40: 49
    • 18b Nguyen-van-Duong MK, Guillot V, Nicolas L, Gaudemer A, Lowry L, Spasojević I, Crumbliss AL. Inorg. Chem. 2001; 40: 5948
    • 18c Dell’mour M, Koellensperger G, Quirino JP, Haddad PR, Stanetty C, Oburger E, Puschenreiter M, Hann S. Electrophoresis 2010; 31: 1201
    • 18d Dimkpa C. Endocytobiosis Cell Res. 2016; 27: 7
    • 18e Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V. Mass Spectrom. Rev. 2016; 35: 35
  • 19 For the ESI-MS spectra of the complexes, see the Supporting Information.