Subscribe to RSS
DOI: 10.1055/s-0035-1560524
Synthesis of Heterocyclic [8]Circulenes and Related Structures
Publication History
Received: 09 August 2015
Accepted after revision: 29 September 2015
Publication Date:
22 December 2015 (online)
Abstract
In this account we give an overview of the synthesis and properties of heterocyclic [8]circulenes. Much of the interest in studying heterocyclic [8]circulenes stems from the planar cyclooctatetraene core often contained in these compounds, which in principle is antiaromatic. We start with a short introduction to the hydrocarbon [n]circulenes and proceed to describe the synthetic chemistry involved in creating tetraoxa[8]circulenes, with particular focus on the acid-mediated oligomerization of benzo- or naphthoquinones, resulting in some simple rules for predicting the outcome of the oligomerization reactions. These rules have guided the synthetic strategies for the preparation of azatrioxa[8]circulenes and diazadioxa[8]circulenes, which will be described in separate sections of this account. More traditional synthetic strategies have been applied in the preparation of octathia[8]circulene, tetrathiatetraselena[8]circulene, and a number of other heterocyclic [8]circulenes, and these synthetic efforts will be highlighted. Finally, a section describing structures that are closely related to the heterocyclic [8]circulenes will be presented, and at the end we will comment on the extensive theoretical work regarding the question of aromaticity/antiaromaticity of the central cyclooctatetraene of heterocyclic[8]circulenes.
1 Introduction
2 Synthesis of [n]circulenes
2.1 [4]Circulene
2.2 [5]Circulene
2.3 [6]Circulene
2.4 [7]Circulene
2.5 [8]Circulene
3 Synthesis of Tetraoxa[8]circulenes: A Historical Perspective
4 Synthesis of Azatrioxa[8]circulenes
5 Synthesis of Diazadioxa[8]circulenes
6 Synthesis of Other Heterocyclic [8]Circulenes
7 Synthesis of Structurally Related Compounds
8 Hetero[8]circulenes and Related Compounds as Tools to Study Aromaticity and Antiaromaticity
9 Conclusion and Outlook
-
References
- 1a Christoph H, Grunenberg J, Hopf H, Dix I, Jones PG, Scholtissek M, Maier G. Chem. Eur. J. 2008; 14: 5604
- 1b Gholami M, Tykwinski RR. Chem. Rev. 2006; 106: 4997
- 1c Hopf H. Angew. Chem. Int. Ed. 2012; 51: 11945
- 2 Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature 1985; 318: 162
- 3 Dopper JH, Wynberg H. J. Org. Chem. 1975; 40: 1957
- 4 Högberg H.-E. Cyclo-Oligomerization of Quinones, Ph.D. Thesis. Royal Institute of Technology; Sweden: 1973
- 5a Kanakaraju R, Kolandaivel P. Int. J. Mol. Sci. 2002; 3: 777
- 5b Kwiatkowski JS, Leszczynski J, Teca I. J. Mol. Struct. 1997; 437: 451
- 5c O’Sullivan PS, Hameka HF. Chem. Phys. Lett. 1969; 4: 123
- 6a Mejlsøe SL, Christensen JB. J. Heterocycl. Chem. 2014; 51: 1051
- 6b Nielsen CB, Brock-Nannestad T, Hammershøj P, Reenberg TK, Schau-Magnussen M, Trpcevski D, Hensel T, Salcedo R, Baryshnikov GV, Minaev BF, Pittelkow M. Chem. Eur. J. 2013; 19: 3898
- 6c Hensel T, Trpcevski D, Lind C, Grosjean R, Hammershøj P, Nielsen CB, Brock-Nannestad T, Nielsen BE, Schau-Magnussen M, Minaev B, Baryshnikov GV, Pittelkow M. Chem. Eur. J. 2013; 19: 17097
- 6d Feng C.-N, Kuo M.-Y, Wu Y.-T. Angew. Chem. Int. Ed. 2013; 52: 7791
- 6e Kumar B, King BT. J. Org. Chem. 2012; 77: 10617
- 6f Dadvand A, Cicoira F, Chernichenko KY, Balenkova ES, Osuna RM, Rosei F, Nenajdenko VG, Perepichka DF. Chem. Commun. 2008; 5354
- 6g Nakamura Y, Aratani N, Shinokubo H, Takagi A, Kawai T, Matsumoto T, Yoon ZS, Kim DY, Ahn TK, Kim D, Muranaka A, Kobayashi N, Osuka A. J. Am. Chem. Soc. 2006; 128: 4119
- 6h Peng H.-Y, Lam C.-K, Mak TC. W, Cai Z, Ma W.-T, Li Y.-X, Wong HN. C. J. Am. Chem. Soc. 2005; 127: 9603
- 6i Sakurai H, Daiko T, Hirao T. Science 2003; 301: 1878
- 6j Scott LT, Hashemi MM, Meyer DT, Warren HB. J. Am. Chem. Soc. 1991; 113: 7082
- 6k Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J. Am. Chem. Soc. 1983; 105: 7171
- 6l Hellwinkel D, Reiff G. Angew. Chem. Int. Ed. 1970; 9: 527
- 7 Bharat; Bhola R, Bally T, Valente A, Cyrański MK, Dobrzycki Ł, Spain SM, Rempała P, Chin MR, King BT. Angew. Chem. Int. Ed. 2010; 49: 399
- 8 Barth WE, Lawton RG. J. Am. Chem. Soc. 1966; 88: 380
- 9 Wu Y.-T, Siegel JS. Chem. Rev. 2006; 106: 4843
- 10 Scholl R, Meyer K. Ber. Dtsch. Chem. Ges. 1932; 65: 902
- 11 Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K. Nature 2012; 490: 192
-
12 Shen H.-C, Tang J.-M, Chang H.-K, Yang C.-W, Liu R.-S. J. Org. Chem. 2005; 70: 10113
- 13 Anthony JW, Bideaux RA, Bladh KW, Nichols MC. Handbook of Mineralogy - Volume V: Borates, Carbonates, Sulfates . Mineral Data Publishing; Tucson: 1990
- 14 Shen M, Ignatyev IS, Xie Y, Schaefer HF. J. Phys. Chem. 1993; 97: 3212
- 15 Yamamoto K, Sonobe H, Matsubara H, Sato M, Okamoto S, Kitaura K. Angew. Chem., Int. Ed. Engl. 1996; 35: 69
-
16a Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem. Eur. J. 2014; 20: 3705
-
16b Sakamoto Y, Suzuki T. J. Am. Chem. Soc. 2013; 135: 14074
- 17 Högberg HE. Acta Chem. Scand. 1973; 27: 2559
- 18 von Knapp H, Schultz G. Liebigs Ann. Chem. 1881; 210: 164
- 19 Liebermann C. Chem. Ber. 1885; 18: 966
- 20a Erdtman HG. H. Proc. R. Soc. London Ser. A 1933; 143: 177
- 20b Erdtman HG. H. Proc. R. Soc. London Ser. A 1933; 143: 191
- 20c Erdtman HG. H. Proc. R. Soc. London Ser. A 1933; 143: 223
- 20d Erdtman HG. H. Proc. R. Soc. London Ser. A 1933; 143: 228
- 21 Pummerer R, Frankfurter F. Chem. Ber. 1914; 47: 1472
- 22 Erdtman H, Högberg HE. Chem. Commun. 1968; 773
- 23 Hewgill FR, Kennedy BR. J. Chem. Soc. C 1966; 362
- 24a Erdtman H, Högberg HE. Tetrahedron Lett. 1970; 3389
- 24b Högberg HE. Acta Chem. Scand. 1972; 26: 309
- 26 Erdtman HG. H, Högberg HE. Heterocycles 1977; 8: 171
- 27 Erdtman H, Högberg H.-E. Tetrahedron 1979; 35: 535
- 28 Eskildsen J, Reenberg T, Christensen JB. Eur. J. Org. Chem. 2000; 1637
- 29 Hashmat Ali M, Niedbalski M, Bohnert G, Bryant D. Synth. Commun. 2006; 36: 1751
- 30 Rathore R, Abdelwahed SH. Tetrahedron Lett. 2004; 45: 5267
- 31 Nielsen CB, Brock-Nannestad T, Reenberg TK, Hammershoj P, Christensen JB, Stouwdam JW, Pittelkow M. Chem. Eur. J. 2010; 16: 13030
- 32 Brock-Nannestad T, Nielsen CB, Schau-Magnussen M, Hammershoj P, Reenberg TK, Petersen AB, Trpcevski D, Pittelkow M. Eur. J. Org. Chem. 2011; 6320
- 33 Brooks PR, Wirtz MC, Vetelino MG, Rescek DM, Woodworth GF, Morgan BP, Coe JW. J. Org. Chem. 1999; 64: 9719
- 34 Plesner M, Hensel T, Nielsen BE, Kamounah FS, Brock-Nannestad T, Nielsen CB, Tortzen CG, Hammerich O, Pittelkow M. Org. Biomol. Chem. 2015; 13: 5937
- 35 Lessene G, Feldman KS. Oxidative Aryl-Coupling Reactions in Synthesis . In Modern Arene Chemistry . Astruc D. Wiley-VCH; Weinheim: 2004: 479-538
- 36 Botman PN. M, Postma M, Fraanje J, Goubitz K, Schenk H, van Maarseveen JH, Hiemstra H. Eur. J. Org. Chem. 2002; 1952
- 37 Rogers CU, Corson BB. J. Am. Chem. Soc. 1947; 69: 2910
- 38 Liu L, Carroll PJ, Kozlowski MC. Org. Lett. 2015; 17: 508
- 39 Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG. Angew. Chem. Int. Ed. 2006; 45: 7367
- 40 Perepichka IF, Perepichka DF, Meng H, Wudl F. Adv. Mater. 2005; 17: 2281
- 41 Sun Y, Liu Y, Zhu D. J. Mater. Chem. 2005; 15: 53
- 42 Barbarella G, Melucci M, Sotgiu G. Adv. Mater. 2005; 17: 1581
- 43 Nakamura Y, Aratani N, Furukawa K, Osuka A. Tetrahedron 2008; 64: 11433
- 44 Xiong X, Deng C.-L, Minaev BF, Baryshnikov GV, Peng X.-S, Wong HN. C. Chem. Asian J. 2015; 10: 969
- 45 Ohmae T, Nishinaga T, Wu M, Iyoda M. J. Am. Chem. Soc. 2010; 132: 1066
- 46 Chen F, Hong YS, Shimizu S, Kim D, Tanaka T, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 10639
- 47a Reiff G. Diplomarbeit. University of Heidelberg; Germany: 1969
- 47b Hellwinkel D, Reiff G, Nykodym V. Liebigs Ann. Chem. 1977; 1013
- 48 Iyoda M, Miura M, Sasaki S, Kabir SM. H, Kuwatani Y, Yoshida M. Tetrahedron Lett. 1997; 38: 4581
- 49 Aita K, Ohmae T, Takase M, Nomura K, Kimura H, Nishinaga T. Org. Lett. 2013; 15: 3522
- 50 Xiong X.-D, Deng C.-L, Peng X.-S, Miao Q, Wong HN. C. Org. Lett. 2014; 16: 3252
- 51 Baker W, Barton JW, McOmie JF. W. J. Chem. Soc. 1958; 2658
- 52 Kabir SM. H, Iyoda M. Synthesis 2000; 1839
- 53 Nobusue S, Miyoshi H, Shimizu A, Hisaki I, Fukuda K, Nakano M, Tobe Y. Angew. Chem. Int. Ed. 2015; 54: 2090
- 54a De Proft F, Geerlings P. Chem. Rev. 2001; 101: 1451
- 54b Zhou Z, Parr RG. J. Am. Chem. Soc. 1989; 111: 7371
- 55 Ruiz-Morales Y. J. Phys. Chem. A 2002; 106: 11283
- 56 Rague von Schleyer P, Jiao H. Pure Appl. Chem. 1996; 68: 209
- 57a Carey FA, Sundberg RJ. Advanced Organic Chemistry, Part A: Structure and Mechanisms . 5th ed. Springer; New York: 2007: 713-770
- 57b Rauk A. Aromatic Compounds. In Orbital Interaction Theory of Organic Chemistry. 2nd ed. John Wiley & Sons; New York: 2002: 150
- 58 Komatsu K, Nishinaga T, Aonuma S, Hirosawa C, Takeuchi K.-i, Lindner HJ, Richter J. Tetrahedron Lett. 1991; 32: 6767
- 59 Komatsu K, Aonuma S, Jinbu Y, Tsuji R, Hirosawa C, Takeuchi K. J. Org. Chem. 1991; 56: 195
- 60 Matsuura A, Komatsu K. J. Am. Chem. Soc. 2001; 123: 1768
- 61 Nakamura Y, Aratani N, Osuka A. Chem. Asian J. 2007; 2: 860
- 62a Schultheiss N, Ellsworth JM, Bosch E, Barnes CL. Eur. J. Inorg. Chem. 2005; 45
- 62b Biradha K, Fujita M. J. Chem. Soc., Dalton Trans. 2000; 3805
- 62c Biradha K, Hongo Y, Fujita M. Angew. Chem. Int. Ed. 2000; 39: 3843
- 63 Minaev BF, Baryshnikov GV, Minaeva VA. Comput. Theor. Chem. 2011; 972: 68
- 64 Minaeva VA, Minaev BF, Baryshnikov GV, Agren H, Pittelkow M. Vib. Spectrosc. 2012; 61: 156
- 65 Baryshnikov G, Minaev B, Pittelkow M, Nielsen C, Salcedo R. J. Mol. Model. 2013; 19: 847
- 66 Bukalov SS, Leites LA, Lyssenko KA, Aysin RR, Korlyukov AA, Zubavichus JV, Chernichenko KY, Balenkova ES, Nenajdenko VG, Antipin MY. J. Phys. Chem. A 2008; 112: 10949
- 67 Baryshnikov GV, Valiev RR, Karaush NN, Minaev BF. PCCP 2014; 16: 15367
- 68 Baryshnikov GV, Minaev BF, Minaeva VA. Russ. Chem. Rev. 2015; 84: 455