Synthesis 2016; 48(05): 737-750
DOI: 10.1055/s-0035-1560386
paper
© Georg Thieme Verlag Stuttgart · New York

Site-Selective N-Arylation of Carbazoles with Halogenated Fluorobenzenes

Lei Wang
School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: dbinly@126.com
,
Enhui Ji
School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: dbinly@126.com
,
Ning Liu*
School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: dbinly@126.com
,
Bin Dai*
School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, P. R. of China   Email: ninglau@163.com   Email: dbinly@126.com
› Author Affiliations
Further Information

Publication History

Received: 26 September 2015

Accepted after revision: 11 November 2015

Publication Date:
28 December 2015 (online)


Abstract

A method for the highly site-selective C–N bond-formation reaction of halogenated fluorobenzenes with carbazoles is described. The selectivity of iodine and fluorine atoms on the aromatic ring of fluorinated iodobenzenes was initially determined with a copper–N,N-diisopropylethylamine catalytic system. By changing the position of the iodine atom on the aromatic ring from the 3- or 4-position to the 2-position, the preferred coupling site was switched from the iodine atom to the fluorine atom. Steric hindrance of the fluorinated iodobenzenes is responsible for the selectivity switch. After elucidating the reaction mechanisms of these reaction processes, a metal-free method for the highly site-selective C–N bond-formation reaction of halogenated fluorobenzenes with carbazoles was revealed through C–F bond activation. The metal-free system is able to handle a range of halogenated groups. Thus, a broad range of chlorinated, brominated, and iodinated N-arylated carbazoles were generated, which are widely useful in organic chemistry.

Supporting Information

 
  • References

    • 1a Choi TA, Czerwonka R, Fröhner W, Krahl MP, Reddy KR, Franzblau SG, Knölker H.-J. ChemMedChem 2006; 1: 812
    • 1b Choi TA, Czerwonka R, Forke R, Jäger A, Knöll J, Krahl MP, Krause T, Reddy KR, Franzblau SG, Knölker H.-J. Med. Chem. Res. 2008; 17: 374
    • 1c Kimura T, Hosokawa-Muto J, Asami K, Murai T, Kuwata K. Eur. J. Med. Chem. 2011; 46: 5675
    • 1d Zall A, Kieser D, Höttecke N, Naumann EC, Thomaszewski B, Schmidt B. Bioorg. Med. Chem. 2011; 19: 4903
    • 1e Bandgar BP, Adsul LK, Chavan HV, Jalde SS, Shringare SN, Masand V. Bioorg. Med. Chem. Lett. 2012; 22: 5839
    • 1f Zhu D, Chen M, Li M, Luo B, Zhao Y, Huang P, Xue F, Rapposelli S, Pi R, Wen S. Eur. J. Med. Chem. 2013; 68: 81
    • 2a Thomas KR. J, Lin JT, Tao YT, Ko CW. J. Am. Chem. Soc. 2001; 123: 9404
    • 2b Wong WY, Ho CL, Gao ZQ, Mi BX, Chen CH, Cheah KW, Lin ZY. Angew. Chem. Int. Ed. 2006; 45: 7800
    • 2c Teng C, Yang XC, Yuan CZ, Li CY, Chen RK, Tian HN, Li SF, Hagfeldt A, Sun LC. Org. Lett. 2009; 11: 5542
    • 2d Tang J, Hua JL, Wu WJ, Li J, Jin ZG, Long YT, Tian H. Energy Environ. Sci. 2010; 3: 1736
    • 2e Song BJ, Song HM, Choi IT, Kim SK, Seo KD, Kang MS, Lee MJ, Cho DW, Ju MJ, Kim HK. Chem. Eur. J. 2011; 17: 11115
    • 2f Wang Y, Chen B, Wu W, Li X, Zhu W, Tian H, Xie Y. Angew. Chem. Int. Ed. 2014; 53: 10779
    • 2g Tan L.-L, Xie L.-J, Shen Y, Liu J.-M, Xiao L.-M, Kuang D.-B, Su C.-Y. Dyes Pigm. 2014; 100: 269
    • 2h Adhikari RM, Mondal R, Shah BK, Neckers DC. J. Org. Chem. 2007; 72: 4727
    • 2i Kwak J, Lyu YY, Lee H, Choi B, Char K, Lee C. J. Mater. Chem. 2012; 22: 6351
    • 3a Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 3b Schneider H.-J. Chem. Sci. 2012; 3: 1381
    • 3c Pan J.-H, Chou Y.-M, Chiu H.-L, Wang B.-C. Aust. J. Chem. 2009; 62: 483
    • 3d Zhu C.-C, Guo K.-P, Guo W.-B, Liu W.-B, He Y.-B, Li Z.-M, Gao X.-C, Deng F.-J, Wei B. Opt. Mater. 2013; 35: 2095
    • 3e Ho C.-L, Wong W.-Y, Yao B, Xie Z, Wang L, Lin Z. J. Organomet. Chem. 2009; 694: 2735
    • 3f Ho C.-L, Wang Q, Lam C.-S, Wong W.-Y, Ma D, Wang L, Gao Z.-Q, Chen C.-H, Cheah K.-W, Lin Z. Chem. Asian J. 2009; 4: 89
    • 3g Wei B, Liu J.-Z, Zhang Y, Zhang J.-H, Peng H.-N, Fan H.-L, He Y.-B, Gao X.-C. Adv. Funct. Mater. 2010; 20: 2448
    • 4a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 4b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 4c Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 4d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 4e Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 5a Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
    • 5b Ullmann F, Illgen E. Ber. Dtsch. Chem. Ges. 1914; 47: 380
    • 6a Nozaki K, Takahashi K, Nakano K, Hiyama T, Tang H.-Z, Fujiki M, Yamaguchi S, Tamao K. Angew. Chem. Int. Ed. 2003; 42: 2051
    • 6b Kitawaki T, Hayashi Y, Ueno A, Chida N. Tetrahedron 2006; 62: 6792
    • 6c Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
    • 6d Zhou Y, Verkade JG. Adv. Synth. Catal. 2010; 352: 616
  • 7 Riedmüller S, Nachtsheim BJ. Beilstein J. Org. Chem. 2013; 9: 1202
  • 8 Zhu D, Liu Q, Luo B, Chen M, Pi R, Huang P, Wen S. Adv. Synth. Catal. 2013; 355: 2172
  • 9 Guo F, Wang L, Wang P, Yu J, Han J. Asian J. Org. Chem. 2012; 1: 218
    • 10a Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
    • 10b Wolfe JP, Wagaw S, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 7215
    • 10c Wolfe JP, Wagaw S, Marcoux J, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 10d Yang BH, Buchwald SL. J. Organomet. Chem. 1999; 576: 125
    • 10e Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
    • 10f Anderson KW, Tundel RE, Ikawa T, Altman RA, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 6523
    • 11a Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 11b Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 11c Hartwig JF. Pure Appl. Chem. 1999; 71: 1417
    • 11d Hartwig JF. Synlett 1997; 329
    • 11e Baranano D, Mann G, Hartwig JF. Curr. Org. Chem. 1997; 1: 287
    • 12a Ma DW, Zhang YD, Yao JC, Wu SH, Tao FG. J. Am. Chem. Soc. 1998; 120: 12459
    • 12b Zhang H, Cai Q, Ma DW. J. Org. Chem. 2005; 70: 5164
    • 12c Ma DW, Cai Q. Acc. Chem. Res. 2008; 41: 1450
    • 12d Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 12e Carril M, SanMartin R, Domínguez E. Chem. Soc. Rev. 2008; 37: 639
    • 12f Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 12g Rao H.-H, Fu H. Synlett 2011; 745
    • 12h Chemler SR. Science 2013; 341: 624
    • 12i Chen F, Liu N, Ji E, Dai B. RSC Adv. 2015; 5: 51512
    • 13a Klapars A, Antilla JC, Huang XH, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7727
    • 13b Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13
    • 14a He M, Soulé J.-F, Doucet H. ChemCatChem 2014; 6: 1824
    • 14b Yan T, Zhao L, He M, Soulé J.-F, Bruneau C, Doucet H. Adv. Synth. Catal. 2014; 356: 1586
    • 14c He M, Soulé J.-F, Doucet H. ChemCatChem 2015; 7: 2130
  • 15 Huo Z, Li Z, Wang T, Zeng H. Tetrahedron 2013; 69: 8964
  • 16 Maligres PE, Krska SW, Dormer PG. J. Org. Chem. 2012; 77: 7646
  • 17 Kim MK, Kwon J, Kwon T.-H, Hong J.-I. New J. Chem. 2010; 34: 1317
  • 18 Lee DH, Lee SG, Jung DI, Hahn JT. Asian J. Chem. 2013; 25: 501
  • 19 Son HS, Lee JY. Org. Electron. 2011; 12: 1025
  • 20 Kwon JK, Cho JH, Ryu Y.-S, Oh SH, Yum EK. Tetrahedron 2011; 67: 4820
  • 21 Liu Y, Nishiura M, Wang Y, Hou Z. J. Am. Chem. Soc. 2006; 128: 5592
  • 22 Zhu D, Liu Q, Luo B, Chen M, Pi R, Huang P, Wen S. Adv. Synth. Catal. 2013; 355: 2172
  • 23 Kautny P, Lumpi D, Wang Y, Tissot A, Bintinger J, Horkel E, Stöger B, Hametner C, Hagemann H, Ma D, Fröhlich J. J. Mater. Chem. C 2014; 2: 2069
  • 24 Liu L, Wong W.-Y, Shi J.-X, Cheah KW, Lee T.-H, Leung LM. J. Organomet. Chem. 2006; 691: 4028
  • 25 Chen Y.-C, Huang G.-S, Hsiao C.-C, Chen S.-A. J. Am. Chem. Soc. 2006; 128: 8549
  • 26 Park JH, Koh TW, Do Y, Lee MH, Yoo S. J. Polym. Sci., Part A: Polym. Chem. 2012; 50: 2356
  • 27 Jian H, Tour JM. J. Org. Chem. 2003; 68: 5091