Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(05): 782-788
DOI: 10.1055/s-0035-1560383
DOI: 10.1055/s-0035-1560383
letter
Unusual Acid- and Base-Catalyzed C–N Bond Formation Approach through Reaction of Chromonyl Meldrum’s Acid and Nitrogen Binucleophiles
Further Information
Publication History
Received: 22 August 2015
Accepted after revision: 20 October 2015
Publication Date:
30 November 2015 (online)
Abstract
Reaction of chromonyl Meldrum’s acid and N-substituted 2-aminobenzamides was studied in the presence of acidic and basic catalysts. The use of methanesulfonic acid as a catalyst in this reaction led to the synthesis of chromonyl quinazolinones through employing Meldrum’s acid as a carbon leaving group. However, in the presence of basic catalyst, this reaction gave functionalized 2-pyridones.
Keywords
chromonyl Meldrum’s acid - binucleophile - acid catalysis - base catalysis - chromonyl quinazolinines - domino Michael–elimination–cyclization reaction - functionalized 2-pyridonesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560383. Copies of 1H NMR, 13C NMR for compound 3a and 1H NMR, 13C NMR, IR, HRMS spectra for compounds 7a–n and 8a–d, and X-ray crystal data for compounds 7c and 7k are included.
- Supporting Information
-
References and Notes
- 1a Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 1b Rizzo S, Waldmann H. Chem. Rev. 2014; 104: 4621
- 2a Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 2b Pellissier H. Chem. Rev. 2013; 113: 442
- 2c Tietze LT, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis 2006
- 3a Tietze LT. Domino Reactions, Concepts for Efficient Organic Synthesis 2014
- 3b Voskressensky LG, Festa AA, Varlamov AV. Tetrahedron 2014; 70: 551
- 4a Dumas AM, Fillion E. Acc. Chem. Res. 2010; 43: 440
- 4b El-Gohary NS. Open Access Lib. J. 2014; 1: 1
- 4c Lipson VV, Gorobets NY. Mol. Diversity 2009; 13: 399
- 4d Cui S, Walker SD, Woo JC. S, Borths CJ, Mukherjee H, Chen MJ, Faul MM. J. Am. Chem. Soc. 2010; 132: 436
- 4e Zorzitto AK, Fillion E. J. Am. Chem. Soc. 2009; 131: 14608
- 4f Knöpfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
- 4g Yamashita M, Yamada K, Tomioka K. Org. Lett. 2005; 7: 2369
- 4h Knöpfel TF, Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
- 5 Plaskon AS, Grygorenko OO, Ryabukhlin SV. Tetrahedron 2012; 68: 2743
- 6a Mohoney SJ, Lou T, Bondarenko G, Fillion E. Org. Lett. 2012; 14: 3474
- 6b Armstrong EL, Grover HK, Kerr MA. J. Org. Chem. 2013; 78: 10534
- 6c Wilsily A, Nguyen Y, Fillion E. J. Am. Chem. Soc. 2009; 131: 15606
- 6d Wilsily A, Fillion E. Org. Lett. 2008; 13: 2801
- 6e Armstrong EL, Grover HK, Kerr MA. J. Org. Chem. 2013; 78: 10534
- 7a Dryager C, Möllers N, Kjäll LK, Alao JP, Dinér P, Wallner FK, Sunnerhagen P, Grøtli M. J. Med. Chem. 2011; 54: 7427
- 7b Mori K, Aurdan G, Monti H. Synlett 1998; 259
- 7c Ghani SB. A, Mugisha PJ, Wilcox JC, Gado EA. M, Medu EO, Lmb AJ, Brown RC. D. Synth. Commun. 2013; 43: 1549
- 7d Fernández-Bachiller MI, Pérez C, Monjas L, Rademann J, Rodríguez-Franco MI. J. Med. Chem. 2012; 55: 1303
- 7e Raju BC, Rao RN, Suman P, Yogeeswari P, Sriram D, Shaik TB, Kalivendi SV. Bioorg. Med. Chem. Lett. 2011; 21: 2855
- 7f Valdameri G, Genoux-Bastide E, Peres B, Gauthier C, Guitton J, Terreux R, Winnischofer SM. B, Rocha ME. M, Boumendjel A, Di Pietro A. J. Med. Chem. 2012; 55: 966
- 7g Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
- 7h Khadem S, Marles RJ. Molecules 2012; 17: 191
- 8a Teimouri MB, Asnaashari B, Moayedi M, Naderi S. Synlett 2015; 26: 101
- 8b Teimouri MB, Akbari-Moghaddam P, Golbaghi G. ACS Comb. Sci. 2011; 13: 659
- 8c Hao W.-J, Jiang B, Tu S.-J, Wu S.-S, Han Z.-G, Cao X.-D, Zhang X.-H, Yan S, Shi F. J. Comb. Chem. 2009; 11: 310
- 8d Sun J, Xia E.-Y, Wu Q, Yan C.-G. ACS Comb. Sci. 2011; 13: 421
- 9 Mehrparvar S, Balalaie S, Rabbanizadeh M, Ghabraie E, Rominger F. Mol. Diversity 2014; 18: 535
- 10 Mehrparvar S, Balalaie S, Rabbanizadeh M, Rominger F, Ghabraie E. Org. Biomol. Chem. 2014; 12: 5757
- 11a Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
- 11b Zhou J, Fang J. J. Org. Chem. 2011; 76: 7730
- 11c Granger BA, Kaneda K, Martin SF. Org. Lett. 2011; 13: 4542
- 11d Sigel E. Med. Chem. Rev. 2005; 2: 251
- 11e Hester JB. Jr. US 3,987,052, 1969
- 11f Keller O, Steiger N, Sternbach LH. US 3,442,946, 1969
- 11g Sharpless KB, Manetsch R. Expert Opin. Drug Discovery 2006; 1: 525
- 11h Mohapatra DK, Maity PK, Shabab M, Khan MI. Bioorg. Med. Chem. Lett. 2009; 19: 5241
- 11i Michael JP. Nat. Prod. Rep. 2003; 20: 476
- 11j Bandekar PP, Roopnarine KA, Parekh VJ, Mitchell TR, Novak MJ, Sinden RR. J. Med. Chem. 2010; 53: 3558
- 11k Bhattacharjee AK, Skanchy DJ, Jennings B, Hudson TH, Brendle JJ, Werbovetz KA. Bioorg. Med. Chem. 2002; 10: 1979
- 11l Chiou W, Liao J, Chen C. J. Nat. Prod. 1996; 59: 374
- 11m Liang JL, Cha HC, Jahng Y. Molecules 2011; 16: 4861
- 12 General Procedure for the Synthesis of 3, 7, and 8 Typical Procedure for 3 To a solution of 3-formylchromone (1; 1 mmol, 174 mg) in EtOH–H2O (4 mL; 1:1) was added Meldrum’s acid (2; 1 mmol, 144 mg), and the mixture was stirred for 3 h at ambient temperature. The precipitate formed was isolated by filtration. 2,2-Dimethyl-5-[(4-oxo-4H-chromen-3-yl)methylene]-1,3-dioxane-4,6-dione (3a) Yellow powder. 1H NMR (300 MHz, DMSO-d 6): δ = 1.78 (s, 6 H, 2 CH3), 7.56 (t, 1 H, J = 7.6 Hz, HAr), 7.73 (d, 1 H, J = 8.4 Hz, HAr), 7.87 (t, 1 H, J = 7.5 Hz, HAr), 8.10 (d, 1 H, J = 7.5 Hz, HAr), 8.26 (s, 1 H, =CH), 9.31 [s, 1 H, (CO2)2C=CH]. 13C NMR (75 MHz, DMSO-d 6): δ = 27.0, 104.9, 117.9, 118.0, 118.7, 123.1, 125.7, 126.7, 135.1, 145.5, 155.1, 159.8, 162.0, 162.2, 173.3. General Procedure for 7 To a solution of isatoic anhydride (4; 1 mmol, 163 mg) in EtOH (4 mL) was added the primary amine, aryl hydrazine, or aryl hydrazide 5a–h (1 mmol), and the mixture was heated for 1 h at 70 °C. This mixture was used for the synthesis of 7a–n or 8a–d without purification. To a solution of product 6a–h (1 mmol) in EtOH (10 mL) was added product 3 (1 mmol), and methanesulfonic acid (20 mol%, 20 mg), and the mixture was heated for 12 h at 70 °C. The reaction reached completion as indicated by TLC (EtOAc–n-hexane, 1:3), and the precipitate was filtered. The precipitate was washed with MeOH, and the resulting powder was pure product 7a–n (yields 48–84%). 2-(4-Oxo-4H-chromen-3-yl)-3-phenethyl-2,3-dihydroquinazolin-4(1H)-one (7c) Yellow powder, 285 mg (72%), mp 228–230 °C. IR (KBr): ν = 3327, 1724, 1632 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 2.88 (dt, 2 H, J = 15.0, 6.6 Hz, CH2Ph), 3.10–3.14 (m, 1 H, CHPh), 4.05–4.09 (m, 1 H, CHN), 5.97 (s, 1 H, CH), 6.68 (t, 1 H, J = 7.1 Hz, HAr), 6.75 (d, 1 H, J = 7.9 Hz, HAr), 6.92 (s, 1 H, NH), 7.16 (d, 1 H, J = 6.6 Hz, HAr), 7.19–7.23 (m, 5 H, HAr), 7.45 (t, 1 H, J = 7.2 Hz, HAr), 7.53 (d, 1 H, J = 6.6 Hz, HAr), 7.68–7.77 (m, 2 H, HAr), 7.97 (s, 1 H, =CH), 8.04 (d, 1 H, J = 7.6 Hz, HAr). 13C NMR (75 MHz, DMSO-d 6): δ = 33.8, 46.2, 64.3, 114.8, 114.9, 117.5, 118.4, 121.4, 123.1, 124.9, 125.7, 126.1, 127.4, 128.3, 128.7, 133.1, 134.5, 138.9, 146.0, 153.2, 155.7, 162.1, 176.1. ESI-HRMS: m/z calcd for C25H21N2O3 [M + H]+: 397.1545; found: 397.1545. Colorless crystal (polyhedron), dimensions 0.270 × 0.150 × 0.130 mm3, crystal system monoclinic, space group C2/c, Z = 8, a = 21.6199(9) Å, b = 15.8126(7) Å, c = 12.0816(5) Å, α = 90°, β = 95.9595(18)°, γ = 90°, V = 4108.0(3) Å3, ρ = 1.282 g cm–3, T = 200(2) K, θmax = 25.661°, radiation Mo Kα, λ = 0.71073 Å, 0.5° ω scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 4.29 and a completeness of 98.6% to a resolution of 0.83 Å, 17018 reflections measured, 3847 unique [R(int) = 0.0280], 2992 observed [I > 2σ(I)], intensities were corrected for Lorentz and polarization effects, an empirical absorption correction was applied using SADABS based on the Laue symmetry of the reciprocal space, μ = 0.09 mm–1, Tmin = 0.89, Tmax = 0.96, structure refined against F2 with a full-matrix least-squares algorithm using the SHELXL (Version 2014-3) software, 275 parameters refined, hydrogen atoms were treated using appropriate riding models, except H6 at N6, which was refined isotropically, goodness of fit 1.03 for observed reflections, final residual values R1(F) = 0.038, wR(F 2) = 0.090 for observed reflections, residual electron density –0.17 to 0.18 eÅ–3. CCDC 1057685 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. General Procedure for the Synthesis of 8 To a solution of chromonyl Meldrum’s acid (3, 1 mmol) in EtOH (10 mL) was added product 6 (1 mmol) and K2CO3 (30 mol%, 50 mg), and the mixture was heated at 70 °C for 12 h, monitoring progress of reaction by TLC (eluent: EtOAc–n-hexane, 1:3). The EtOH was removed under vacuum, and further purification was carried out using preparative TLC (n-hexane–EtOAc, 2:1). The products were obtained as yellow oils. N-Benzyl-2-[5-(2-hydroxybenzoyl)-2-oxopyridin-1(2H)-yl]benzamide (8b) Yellow oil; 314 mg (74%). IR (KBr): ν = 3263, 1677, 1658 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 4.31 (dd, 1 H, J = 15.0, 8.0 Hz, CH2), 4.35 (dd, 1 H, J = 15.0, 6.0 Hz, CH2), 6.53 (d, 1 H, J = 9.5 Hz, HAr), 6.88 (t, 1 H, J = 9.5 Hz, HAr), 6.94 (d, 1 H, J = 7.8 Hz, HAr), 7.18–7.30 (m, 5 H, HAr), 7.35 (t, 1 H, J = 7.4 Hz, HAr), 7.44 (d, 1 H, J = 7.4 Hz, HAr), 7.55–7.67 (m, 3 H, HAr), 7.85 (d, 1 H, J = 2.5 Hz, HAr), 7.89 (dd, 1 H, J = 8.7, 2.5 Hz, HAr), 9.00 (t, 1 H, J = 5.9 Hz, NH), 10.29 (s, 1 H, OH). 13C NMR (75 MHz, DMSO-d 6): δ = 54.9, 116.3, 116.6, 116.7, 119.2, 119.4, 124.4, 124.5, 126.7, 127.0, 128.2, 128.4, 129.3, 129.9, 131.2, 132.8, 134.2, 138.1, 139.1, 139.2, 146.4, 155.8, 156.0, 161.3, 165.9, 191.6. ESI-MS: m/z = 425.0 [M + H]+. Anal. Calcd. for C26H20N2O4: C, 73.57; H, 4.75; N, 6.60. Found: C, 73.49; H, 4.79; N, 6.64.