Synthesis 2015; 47(24): 3891-3900
DOI: 10.1055/s-0035-1560260
paper
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Photocatalysis of 1,1,1-Trifluoro-2-iodoethane with Alkylalkenes and Silyl Enol Ethers

Meiwei Huang
a   College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: zzg63129@163.com
,
Lun Li
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: chenqy@sioc.ac.cn   Email: yguo@sioc.ac.cn
,
Zhi-Gang Zhao*
a   College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: zzg63129@163.com
,
Qing-Yun Chen*
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: chenqy@sioc.ac.cn   Email: yguo@sioc.ac.cn
,
Yong Guo*
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: chenqy@sioc.ac.cn   Email: yguo@sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 22 July 2015

Accepted after revision: 21 August 2015

Publication Date:
16 September 2015 (online)


Abstract

Reactions of 1,1,1-trifluoro-2-iodoethane with alkylalkenes and silyl enol ethers were performed in the presence of a catalytic amount of fac-Ir(ppy)3 and an excessive amount of Hünig’s base in acetonitrile irradiated by a 24 W fluorescent lamp under nitrogen atmosphere for 48 hours. The visible-light-induced photoredox reactions introduce simultaneously a 2,2,2-trifluoroethyl group and an iodine atom to both sides of the double bond of ordinary alkenes via an atom-transfer radical addition (ATRA). The same reaction with silyl enol ethers generates β-trifluoromethyl ketones, which are typically a challenge to synthesize. The reactions proved to be tolerant of a variety of functionalities.

Supporting Information

 
  • References

    • 2a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 2c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2d Thayer AM. Chem. Eng. News 2006; 84 (23) 15
    • 3a Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 3b Xu XH, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 3c Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 3d Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 3e Wang S.-M, Han J.-B, Zhang C.-P, Qin H.-L, Xiao J.-C. Tetrahedron 2015; 71 in press; doi: 10.1016/j.tet.2015.06.056
    • 3f Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 3g Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 4a Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Chem. Soc. Rev. 2012;  41: 4536
    • 4b Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C. Tetrahedron 2013;  69: 10955
    • 4c Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Coord. Chem. Rev. 2014; 261: 28
    • 5a Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 5b Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
  • 6 Nenajdenko VG, Muzalevskiy VM, Shastin AV. Chem. Rev. 2015; 115: 973
    • 7a Chen Q.-Y, Wu S.-W. J. Chem. Soc., Chem. Commun. 1989; 705
    • 7b Zhao TS. N, Szabó KJ. Org. Lett. 2012; 14: 3966
    • 7c Bouillon J.-P, Maliverney C, Merényi R, Viehe HG. J. Chem. Soc., Perkin Trans.1 1991; 2147
    • 7d Miyake Y, Ota S, Shibata M, Nakajima K, Nishibayashi Y. Chem. Commun. 2013; 49: 7809
  • 8 Kawai H, Furukawa T, Nomura Y, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 3596
    • 9a Parsons AT, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9120
    • 9b Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 16410
    • 9c Xu J, Fu Y, Luo D.-F, Jiang Y.-Y, Xiao B, Liu Z.-J, Gong T.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
    • 9d Mizuta S, Galicia-López O, Engle KM, Verhoog S, Wheelhouse K, Rassias G, Gouverneur V. Chem. Eur. J. 2012; 18: 8583
    • 9e Shimizu R, Egami H, Hamashima Y. Angew. Chem. Int. Ed. 2012; 51: 4577
    • 9f Mizuta S, Engle KM, Verhoog S, Galicia-López O, O’Duill M, Médebielle M, Wheelhouse K, Rassias G, Thompson AL, Gouverneur V. Org. Lett. 2013; 15: 1250
  • 10 Chu L, Qing F.-L. Org. Lett. 2012; 14: 2106
    • 11a Mcloughlin VC. R, Thrower J. Tetrahedron 1969; 25: 5921
    • 11b Zhao Y, Hu J. Angew. Chem. Int. Ed. 2012; 51: 1033
    • 11c Liang A, Li X, Liu D, Li J, Zou D, Wu Y, Wu Y. Chem. Commun. 2012; 48: 8273
    • 11d Xu S, Chen H.-H, Dai J.-J, Xu H.-J. Org Lett. 2014; 16: 2306
    • 11e Zhang H, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 10174
    • 11f Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
    • 11g Fu W, Zhou M, Xu C, Zhou G, Wang Z, Ji B. J. Fluorine Chem. 2014; 168: 50
    • 11h Wu G, Deng Y, Wu C, Wang X, Zhang Y, Wang J. Eur. J. Org. Chem. 2014; 4477
    • 12a Liu C.-B, Meng W, Li F, Wang S, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2012; 51: 6227
    • 12b Feng Y.-S, Xie C.-Q, Qiao WL, Xu HJ. Org. Lett. 2013; 15: 936
    • 12c Hwang J, Park K, Choe J, Min K, Song KH, Lee S. J. Org. Chem. 2014; 79: 3267
    • 12d Han, E.-J.; Sun, Y.; Shen, Q.; Chen, Q.-Y.; Guo, Y.; Huang, Y.-G. Org. Chem. Front. 2015, 2, in press; DOI: 10.1039/C5QO00210A.
    • 13a Long Z.-Y, Chen Q.-Y. Tetrahedron Lett. 1998; 39: 8487
    • 13b Long Z.-Y, Chen Q.-Y. J. Org. Chem. 1999; 64: 4775
  • 14 Kreis LM. K, Krautwald S, Pfeiffer N, Martin RE, Carreira EM. Org. Lett. 2013; 15: 1634
    • 15a Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature 2012; 492: 95
    • 15b Tang X.-J, Thomoson SC, Dolbier WR. Jr. Org. Lett. 2014; 16: 4594
  • 16 Fu W, Zhu M, Zou G, Xu C, Wang Z. Synlett 2014; 25: 2513
    • 17a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 17b Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 17c Lin Q.-Y, Xu X.-H, Qing F.-L. Org. Biomol. Chem. 2015; 13: 8740
    • 18a Tang XJ, Chen Q.-Y. Org. Lett. 2012; 14: 6214
    • 18b Li L, Chen Q.-Y, Guo Y. J. Fluorine Chem. 2014; 167: 79
    • 18c Wang Q, Huan F, Shen H, Xiao J.-C, Gao M, Yang X, Murahashi S.-I, Chen Q.-Y, Guo Y. J. Org. Chem. 2013; 78: 12525
    • 18d Li L, Chen Q.-Y, Guo Y. Chem. Commun. 2013; 49: 8764
    • 18e Wang W, Huan F, Sun Y, Fang J, Liu X.-Y, Chen Q.-Y, Guo Y. J. Fluorine Chem. 2015; 171: 46
    • 18f Li L, Huang D, Chen QY, Guo Y. Synlett 2013; 24: 611
    • 19a Lerch MM, Morandi B, Wickens ZK, Grubbs RH. Angew. Chem. Int. Ed. 2014; 53: 8654
    • 19b Okusu S, Sugita Y, Tokunaga E, Shibata N. Beilstein J. Org. Chem. 2013; 9: 2189
    • 19c Yang T.-P, Li Q, Lin J.-H, Xiao J.-C. Chem. Commun. 2014; 50: 1077
    • 20a Li L, Chen Q.-Y, Guo Y. Chem. Commun. 2013; 49: 8764
    • 20b Zhang K, Liu J-B, Qing F.-L. Chem. Commun. 2014; 50: 14157
    • 20c Xu J, Fu Y, Luo D.-F, Jiang Y.-Y, Xiao B, Liu Z.-J, Guo T.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
    • 20d Li Q.-J, Ma C, Li Q.-Z, Du W, Chen Y.-C. Org. Lett. 2014; 16: 3986
    • 21a Li L, Chen Q.-Y, Guo Y. J. Org. Chem. 2014; 79: 5145
    • 21b Guo Y, Tao GH, Blumenfeld A, Shreeve JM. Organometallics 2010; 29: 1818
    • 21c Guo Y, Twamley B, Shreeve JM. Org. Biomol. Chem. 2009; 7: 1716