Synlett 2015; 26(19): 2714-2719
DOI: 10.1055/s-0035-1560209
letter
© Georg Thieme Verlag Stuttgart · New York

Rapid and Efficient Microwave-Assisted Hydrophosphinylation of Unactivated Alkenes with H-Phosphinic Acids without Added Metal or Radical Initiator

Panagiota Troupa
Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece   Email: svassiliou@chem.uoa.gr
,
Georgia Katsiouleri
Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece   Email: svassiliou@chem.uoa.gr
,
Stamatia Vassiliou*
Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece   Email: svassiliou@chem.uoa.gr
› Author Affiliations
Further Information

Publication History

Received: 22 July 2015

Accepted after revision: 09 August 2015

Publication Date:
01 September 2015 (online)


Abstract

A microwave-assisted hydrophosphinylation of unactivated alkenes with phosphinic acid and its derivatives under metal-free and initiator-free conditions is reported. Such hydrophosphinylations are operationally simple, use aqueous hypophosphorus acid, H-phenylphosphinic acid, and H-alkylphosphinic acids, and seem to proceed by a radical mechanism. Good isolated yields were obtained using a reasonable excess of the appropriate reagent.

Supporting Information

 
  • References and Notes

    • 1a Corbridge DE. C In Phosphorus: Chemistry, Biochemistry and Technology . CRC Press; London: 2013. 6th ed
    • 1b Quin LD In A Guide to Organophosphorus Chemistry . Wiley-Interscience; Hoboken, NJ: 2000
    • 1c Hartley FR. The Chemistry of Organophosphorus Compounds . Vol. 4. Wiley; New York: 1996

      For selected reviews on C–P bond formation, see:
    • 2a Engel R, Cohen JI. Synthesis of Carbon–Phosphorus Bonds . CRC Press; Boca Raton: 2003. 2nd ed
    • 2b Wicht DK, Glueck DS In Catalytic Heterofunctionalization . Togni A, Grützmacher H. Wiley-VCH; Weinheim: 2001
    • 2c Delacroix O, Gaumont A.-C. Curr. Org. Chem. 2005; 9: 1851
    • 2d Schwan AL. Chem. Soc. Rev. 2004; 33: 218
    • 2e Tanaka M. Top. Curr. Chem. 2004; 232: 25
    • 2f Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
    • 2g Baillie C, Xiao J. Curr. Org. Chem. 2003; 7: 477
  • 3 Coudray L, Montchamp J.-L. Eur. J. Org. Chem. 2008; 3601
    • 4a Dubert O, Gautier A, Condamine E, Piettre SR. Org. Lett. 2002; 4: 359
    • 4b Gautier A, Garipova G, Salcedo C, Balieu S, Piettre SR. Angew. Chem. Int. Ed. 2004; 43: 5963
    • 5a Nifant'ev EE, Magdeeva RK, Shchepet'eva NP. J. Gen. Chem. USSR 1980; 50: 1416
    • 5b Karanewsky DS, Badia MC, Cushman DW, DeForrest JM, Dejneka T, Loots MJ, Perri MG, Petrillo EW, Powell JR. J. Med. Chem. 1988; 31: 204
    • 5c Jessop CM, Parsons AF, Routledge A, Irvine D. Tetrahedron Lett. 2003; 44: 479
    • 5d Antczak MI, Montchamp J.-L. Synthesis 2006; 3080
    • 5e Jessop CM, Parsons AF, Routledge A, Irvine DJ. Eur. J. Org. Chem. 2006; 1547
    • 6a Deprèle S, Montchamp J.-L. J. Org. Chem. 2001; 66: 6745
    • 6b Feng Y, Coward JK. J. Med. Chem. 2006; 49: 770
    • 7a Yoo W.-J, Kobayashi S. Green Chem. 2013; 15: 1844
    • 7b Kawaguchi S.-I, Nomoto A, Sonoda M, Ogawa A. Tetrahedron Lett. 2009; 50: 624
  • 8 Li Z, Fan F, Zhang Z, Xiao Y, Liu D, Liu Z.-Q. RSC Adv. 2015; 5: 27853
  • 9 Hirai T, Han L.-B. Org. Lett. 2007; 9: 53
  • 10 Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett. 1986; 27: 279
  • 11 de la Hoz A, Diaz-Ortiz A, Moreno A. Chem. Soc. Rev. 2005; 34: 164
  • 12 Guenin E, Meziane D. Curr. Org. Chem. 2011; 15: 3465
  • 13 Stockland RA. Jr, Taylor RI, Thompson LE, Patel PB. Org. Lett. 2005; 7: 851
  • 14 Gabriel C, Gabriel S, Grant EH, Halstead BS. J, Mingos DM. P. Chem. Soc. Rev. 1998; 27: 213
  • 15 Markoulides MS, Regan AC. Org. Biomol. Chem. 2013; 11: 119
  • 16 Keglevich G, Kiss NZ, Mucsi Z, Körtvélyesi T. Org. Biomol. Chem. 2012; 10: 2011
  • 17 Anderson NG, Coradetti ML, Cronin JA, Davies ML, Gardineer MB, Kotnis AS, Lust DA, Palaniswamy VA. Org. Process Res. Dev. 1997; 1: 315
  • 18 Ong J, Harrison NL, Hall RG, Barker JL, Johnston G, Kerr D. Brain Res. 1990; 526: 138
    • 19a Olah GA, Molnár Á In Hydrocarbon Chemistry . John Wiley and Sons; Hoboken, NJ: 2003. 2nd ed
    • 19b Hydrofunctionalization. In Topics in Organometallic Chemistry . Vol 43. Ananikov VP, Tanaka M. Springer; Berlin: 2013
  • 20 Ortial S, Fisher HC, Montchamp J.-L. J. Org. Chem. 2013; 78: 6599
  • 21 Enders D, Saint-Dizier A, Lannou M.-I, Lenzen A. Eur. J. Org. Chem. 2006; 29
  • 22 Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
  • 23 Typical Procedures Procedure A H3PO2 (50% aq, 0.21 mL, 2 mmol), 10-undecenoic acid (74 mg, 0.4 mmol), and dioxane (4 mL) were added to a 10 mL microwave vial containing a Teflon-coated stirrer bar and a septum. The vial was sealed and heated under microwave irradiation at 180 °C (100 W) for 1 h. After cooling to r.t. the reaction mixture was partitioned between CH2Cl2 (15 mL) and H2O (10 mL), the organic phase was dried over Na2SO4, filtered, and concentrated under reduced pressure. Chromatographic purification on silica gel using CH2Cl2–MeOH–AcOH = 9:1:0.5 as eluent afforded 11-(hydroxyhydrophosphoryl)undecanoic acid (3i) as a white solid (40 mg, 45%); mp 82–84 °C.Rf  = 0.41 (CHCl3–MeOH–AcOH = 7:1:0.5). 1H NMR (200 MHz, DMSO): δ = 8.23 (br s, 1 H), 5.64 (s, 1 H), 2.18 (t, J = 7.2 Hz, 2 H), 1.51–1.18 (m, 18 H). 13C NMR (50 MHz, DMSO): δ = 174.6, 33.7, 29.9 (d, J PCC = 15.1 Hz), 28.9, 28.9, 28.8, 29.7 (d, J PC = 95.6 Hz), 28.6, 24.57, 20.8 (d, J PCC = 2.7 Hz). 31P NMR (81 MHz, DMSO): δ = 31.74. MS (ES): m/z calcd for C11H23O4P [M – H]: 249.13; found: 249.25. HRMS (TOF): m/z calcd for C11H23O4P [M – H]: 249.1261; found: 249.1259. Procedure B Phenyphosphinic acid (28 mg, 0.2 mmol), benzyl allyl carbamate (76 mg, 0.4 mmol), and dioxane (4 mL) were added to a 10 mL microwave vial containing a Teflon-coated stirrer bar and a septum. The vial was sealed and heated under microwave irradiation at 160 °C (100 W) for 1 h. After cooling to r.t. the reaction mixture was purified by column chromatography on silica gel using CH2Cl2–MeOH–AcOH = 9:0.5:0.5 as eluent to give (3-{[(benzyloxy)carbonyl]amino}propyl)(phenyl)phosphinic acid (6f) as an oil (46 mg, 69%).Rf  = 0.50 (CHCl3–MeOH–AcOH = 7:1:0.5). 1H NMR (200 MHz, CDCl3): δ = 7.84–7.01 (m, Ar, 10 H), 5.04 (s, 2 H), 3.13 (s, 2 H), 1.95–1.48 (m, 4 H). 13C NMR (50 MHz, CDCl3): δ = 156.4, 136.5, 132.1, 131.0, 128.4, 128.0, 66.5, 41.1, 27.5 (d, J PC = 92.8 Hz), 22.5. 31P NMR (81 MHz, CDCl3): δ = 45.25. MS (ES): m/z calcd for C17H20NO4P [M – H]: 332.11; found: 332.14. HRMS (TOF): m/z calcd for C17H20NO4P [M – H]: 332.1057; found: 332.1068. Procedure C (4-Phenylbutyl)phosphinic acid (3f, 79 mg, 0.4 mmol), benzyl allylcarbamate (229 mg, 1.2 mmol), and dioxane (4 mL) were added to a 10 mL microwave vial containing a Teflon-coated stirrer bar and a septum. The vial was sealed and was heated under microwave irradiation at 180 °C (100 W) for 1 h. After cooling to r.t. the reaction mixture was purified by column chromatography on silica gel using CH2Cl2–MeOH–AcOH = 9:0.5:0.5 as eluent to (3-{[(benzyloxy)carbonyl]amino}propyl)(4-phenylbutyl)phosphinic acid (7b) as a white solid (78 mg, 50%); mp 137–139 °C.Rf  = 0.44 (CHCl3–MeOH–AcOH = 9:0.5:0.5). 1H NMR (200 MHz, CDCl3): δ = 7.45–7.06 (m, 10 H), 5.05 (s, 2 H), 3.21 (s, 2 H), 2.58 (s, 2 H), 1.64 (s, 10 H). 13C NMR (50 MHz, CDCl3): δ = 156.5, 141.8, 136.4, 128.5, 128.3, 128.0, 125.8, 66.6, 41.2, 35.4, 32.5 (d, J PCC = 4.0 Hz), 30.9 (d, J PC = 140.6 Hz), 30.6 (d, J PC = 128.8 Hz), 29.6 (d, J PCC = 4.0 Hz), 22.6, 22.1, 21.3, 14.1. 31P NMR (81 MHz, CDCl3): δ = 59.66. ES-MS (TOF): m/z calcd for C21H28NO4P [M – H]: 388.17; found: 388.22. HRMS: m/z calcd for C21H28NO4P [M – H]: 388.1683; found: 388.1688. Procedure D H3PO2 (50% aq, 84 μL, 0.8 mmol), cyclododecene (66 mg, 0.4 mmol), and dioxane (4 mL) were added to a 10 mL microwave vial containing a Teflon-coated stirrer bar and a septum. The vial was sealed and heated under microwave irradiation at 180 °C (100 W) for 1 h. After cooling to r.t. the reaction mixture was partitioned between CH2Cl2 (15 mL) and H2O (4 mL), the organic phase was dried over Na2SO4, filtered, and concentrated under reduced pressure. Chromatographic purification on silica gel using CH2Cl2–MeOH–AcOH = 9:1:0.5 as eluent afforded cyclododecylphosphinic acid (9e) as a viscous oil (26 mg, 28%).Rf  = 0.35 (CHCl3–MeOH–AcOH = 9:1:0.5). 1H NMR (200 MHz, CDCl3): δ = 9.98 (s, 1 H), 6.91 (d, J = 527.5 Hz, 1 H), 1.45–1.30 (m, 23 H). 13C NMR (50 MHz, CDCl3): δ = 33.7 (d, J PC = 90.7 Hz), 25.5 (d, J PCC = 13.1 Hz), 23.6, 23.2, 22.4. 31P NMR (81 MHz, CDCl3): δ = 44.80. MS (ES): m/z calcd for C12H24O2P [M – H]: 231.15; found: 231.27. HRMS (TOF): m/z calcd for C12H24O2P [M – H]: 231.1519; found: 231.1512. Procedure E Phenyphosphinic acid (28 mg, 0.2 mmol), N-carbobenzoxy-3-pyrroline (81 mg, 0.4 mmol), and dioxane (4 mL) were added to a 10 mL microwave vial containing a Teflon-coated stirrer bar and a septum. The vial was sealed and heated under microwave irradiation at 160 °C (100 W) for 1 h. After cooling to r.t. the reaction mixture was purified by column chromatography on silica gel using CH2Cl2–MeOH–AcOH = 9:0.5:0.5 as eluent to give {1-[(benzyloxy)carbonyl]pyrrolidin-3-yl}(phenyl)phosphinic acid (10e) as a white solid (23 mg, 33%); mp 121–123 °C Rf  = 0.60 (CH2Cl2–MeOH–AcOH = 9:0.5:0.5). 1H NMR (200 MHz, CDCl3): δ = 7.64–7.29 (m, 10 H), 5.04 (s, 2 H), 3.33–3.12 (m, 4 H), 2.33 (s, 1 H), 1.86 (s, 2 H). 13C NMR (150 MHz, CDCl3): δ = 154.4, 136.8, 132.0, 131.4, 130.8 (d,J PCC = 4.3 Hz), 128.4, 127.8 (d,J PCCC = 9.7 Hz), 66.7, 46.3 (d,J PCCC = 32.8 Hz), 45.7, 39.3 (d,J PCC = 93.8 Hz), 25.7 (d,J PC = 103.2 Hz). 31P NMR (81 MHz, CDCl3): δ = 40.14. MS (ES): m/z calcd for C18H19NO4P [M – H]: 344.11; found: 344.16. HRMS (TOF): m/z calcd C18H19NO4P [M – H]: 344.1057; found: 344.1061.