Journal of Pediatric Neurology 2015; 13(04): 186-197
DOI: 10.1055/s-0035-1558865
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Diagnosis of Biogenic Amines Synthesis Defects

Elisenda Cortès-Saladelafont
1   Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Marta Molero-Luis
2   Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Aida Ormazábal
2   Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Alba Tristán-Noguero
3   Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Cristina Sierra
2   Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Judith Armstrong
2   Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Rafael Artuch
2   Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
,
Àngels Garcia-Cazorla
1   Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
3   Department of Neurology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
› Author Affiliations
Further Information

Publication History

18 February 2015

19 February 2015

Publication Date:
12 August 2015 (online)

Abstract

Defects of biogenic amines synthesis encompass a group of rare genetic disorders that have been described during the last few decades. They include tyrosine hydroxylase deficiency, aromatic L-amino acid decarboxylase deficiency, and pterin defects such as 6-pyruvoyl-tetrahydropterin synthase deficiency, dihydropteridine reductase deficiency, guanosine triphosphate cyclohydrolase-I deficiency, and sepiapterin reductase deficiency. These diseases cause low brain concentrations of catecholamines (dopamine and norepinephrine) and serotonin, which may affect motor, cognitive, and autonomic nervous system. Although most patients have recognizable phenotypes, and share a collection of overlapping symptoms, presentations vary widely and may appear to be nonclassic for the specific disorder. In general, the spectrum of clinical manifestations range from benign forms such as L-3,4-dihydroxyphenylalanine responsive movement disorders to severe encephalopathies that are difficult to treat. These conditions require the specialized analysis of the cerebrospinal fluid because every defect has a very suggestive profile in regard to monoamine and pterin metabolites. However, secondary deficiencies of these metabolites in the cerebrospinal fluid can also be found in a wide variety of neurological disorders. Owing to the still existing challenges of the diagnostic approach, it is important to highlight some of the most relevant clinical and biochemical signatures, as well as to propose practical algorithms that may help clinicians to detect and treat these patients.

 
  • References

  • 1 Kurian MA, Zhen J, Cheng SY , et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 2009; 119 (6) 1595-1603
  • 2 Rilstone JJ, Alkhater RA, Minassian BA. Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med 2013; 368 (6) 543-550
  • 3 Lüdecke B, Knappskog PM, Clayton PT , et al. Recessively inherited L-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet 1996; 5 (7) 1023-1028
  • 4 Hoffmann GF, Assmann B, Bräutigam C , et al. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 2003; 54 (Suppl. 06) S56-S65
  • 5 Furukawa Y, Kish SJ, Fahn S. Dopa-responsive dystonia due to mild tyrosine hydroxylase deficiency. Ann Neurol 2004; 55 (1) 147-148
  • 6 Schiller A, Wevers RA, Steenbergen GC, Blau N, Jung HH. Long-term course of L-dopa-responsive dystonia caused by tyrosine hydroxylase deficiency. Neurology 2004; 63 (8) 1524-1526
  • 7 Ribasés M, Serrano M, Fernández-Alvarez E , et al. A homozygous tyrosine hydroxylase gene promoter mutation in a patient with dopa-responsive encephalopathy: clinical, biochemical and genetic analysis. Mol Genet Metab 2007; 92 (3) 274-277
  • 8 Pons R, Serrano M, Ormazabal A , et al. Tyrosine hydroxylase deficiency in three Greek patients with a common ancestral mutation. Mov Disord 2010; 25 (8) 1086-1090
  • 9 Stamelou M, Mencacci NE, Cordivari C , et al. Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology 2012; 79 (5) 435-441
  • 10 Szentiványi K, Hansíková H, Krijt J , et al. Novel mutations in the tyrosine hydroxylase gene in the first Czech patient with tyrosine hydroxylase deficiency. Prague Med Rep 2012; 113 (2) 136-146
  • 11 Chi CS, Lee HF, Tsai CR. Tyrosine hydroxylase deficiency in Taiwanese infants. Pediatr Neurol 2012; 46 (2) 77-82
  • 12 Ortez C, Duarte ST, Ormazábal A , et al. Cerebrospinal fluid synaptic proteins as useful biomarkers in tyrosine hydroxylase deficiency. Mol Genet Metab 2015; 114 (1) 34-40
  • 13 Willemsen MA, Verbeek MM, Kamsteeg EJ , et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 2010; 133 (Pt 6) 1810-1822
  • 14 Fossbakk A, Kleppe R, Knappskog PM, Martinez A, Haavik J. Functional studies of tyrosine hydroxylase missense variants reveal distinct patterns of molecular defects in Dopa-responsive dystonia. Hum Mutat 2014; 35 (7) 880-890
  • 15 Dionisi-Vici C, Hoffmann GF, Leuzzi V , et al. Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr 2000; 136 (4) 560-562
  • 16 Hyland K, Surtees RA, Rodeck C, Clayton PT. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 1992; 42 (10) 1980-1988
  • 17 Fiumara A, Bräutigam C, Hyland K , et al. Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies. Neuropediatrics 2002; 33 (4) 203-208
  • 18 Swoboda KJ, Saul JP, McKenna CE, Speller NB, Hyland K. Aromatic L-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Ann Neurol 2003; 54 (Suppl. 06) S49-S55
  • 19 Manegold C, Hoffmann GF, Degen I , et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis 2009; 32 (3) 371-380
  • 20 Ito S, Nakayama T, Ide S , et al. Aromatic L-amino acid decarboxylase deficiency associated with epilepsy mimicking non-epileptic involuntary movements. Dev Med Child Neurol 2008; 50 (11) 876-878
  • 21 Hwu WL, Muramatsu S, Tseng SH , et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 2012; 4 (134) 134ra61
  • 22 Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 2001; 69 (2) 269-277
  • 23 Wassenberg T, Willemsen MA, Geurtz PB , et al. Urinary dopamine in aromatic L-amino acid decarboxylase deficiency: the unsolved paradox. Mol Genet Metab 2010; 101 (4) 349-356
  • 24 Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis 2009; 32 (3) 333-342
  • 25 Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis 2012; 35 (6) 963-973
  • 26 Opladen T, Hoffmann G, Hörster F , et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 2011; 26 (1) 157-161
  • 27 Hyland K. Inherited disorders affecting dopamine and serotonin: critical neurotransmitters derived from aromatic amino acids. J Nutr 2007; 137 (6) (Suppl. 01) 1568S-1572S , discussion 1573S–1575S
  • 28 Ensemble Genome Browser. Available at: http://www.ensembl.org/index.html . Accessed January 24, 2015
  • 29 International database of patients and genotypes causing phenylalanine hydroxylase deficiency (PKU) incl. BH4-responsive HPA/PKU. Available at: http://www.biopku.org/biomdb . Accessed January 24, 2015
  • 30 Niederwieser A, Shintaku H, Leimbacher W , et al. “Peripheral” tetrahydrobiopterin deficiency with hyperphenylalaninaemia due to incomplete 6-pyruvoyl tetrahydropterin synthase deficiency or heterozygosity. Eur J Pediatr 1987; 146 (3) 228-232
  • 31 Leuzzi V, Carducci CA, Carducci CL , et al. Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clin Genet 2010; 77 (3) 249-257
  • 32 Dhondt JL, Saudubray JM . Orphanet. Available at: http://www.orpha.net/consor/cgi-bin/index.php . Accessed January 25, 2015
  • 33 Kaufman S, Holtzman NA, Milstien S, Butler LJ, Krumholz A. Phenylketonuria due to a deficiency of dihydropteridine reductase. N Engl J Med 1975; 293 (16) 785-790
  • 34 Coughlin II CR, Hyland K, Randall R, Ficicioglu C. Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: a case report. JIMD Rep 2013; 10: 53-56
  • 35 de Sanctis L, Alliaudi C, Spada M , et al. Genotype-phenotype correlation in dihydropteridine reductase deficiency. J Inherit Metab Dis 2000; 23 (4) 333-337
  • 36 Ichinose H, Ohye T, Takahashi E , et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 1994; 8 (3) 236-242
  • 37 Segawa M. Autosomal dominant GTP cyclohydrolase I (AD GCH 1) deficiency (Segawa disease, dystonia 5; DYT 5). Chang Gung Med J 2009; 32 (1) 1-11
  • 38 Dale RC, Melchers A, Fung VS, Grattan-Smith P, Houlden H, Earl J. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol 2010; 52 (6) 583-586
  • 39 López-Laso E, Sánchez-Raya A, Moriana JA , et al. Neuropsychiatric symptoms and intelligence quotient in autosomal dominant Segawa disease. J Neurol 2011; 258 (12) 2155-2162
  • 40 Bonafé L, Thöny B, Leimbacher W, Kierat L, Blau N. Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Clin Chem 2001; 47 (3) 477-485
  • 41 Friedman J, Roze E, Abdenur JE , et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 2012; 71 (4) 520-530
  • 42 Ormazabal A, García-Cazorla A, Fernández Y, Fernández-Alvarez E, Campistol J, Artuch R. HPLC with electrochemical and fluorescence detection procedures for the diagnosis of inborn errors of biogenic amines and pterins. J Neurosci Methods 2005; 142 (1) 153-158
  • 43 Molero-Luis M, Serrano M, Ormazábal A , et al; Neurotransmitter Working Group. Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Dev Med Child Neurol 2013; 55 (6) 559-566
  • 44 De Grandis E, Serrano M, Pérez-Dueñas B , et al. Cerebrospinal fluid alterations of the serotonin product, 5-hydroxyindolacetic acid, in neurological disorders. J Inherit Metab Dis 2010; 33 (6) 803-809
  • 45 Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 2011; 10 (8) 721-733
  • 46 Blau N, Bonafé L, Blaskovics ME. Disorders of phenylalanine and tetrahydrobiopterin metabolism. In: Blau N, Duran M, Blaskovics ME, Gibson K, , eds. Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. New York: Springer; 2003: 89-106
  • 47 Blau N, Hoffmann GF. Congenital Neurotransmitters Disorders. New York: Nova Biomedical; 2014
  • 48 Verbeek MM, Steenbergen-Spanjers GC, Willemsen MA , et al. Mutations in the cyclic adenosine monophosphate response element of the tyrosine hydroxylase gene. Ann Neurol 2007; 62 (4) 422-426