J Neurol Surg A Cent Eur Neurosurg 2016; 77(04): 326-332
DOI: 10.1055/s-0035-1558420
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Pathophysiology of Minimally Invasive Surgical Approaches: Current Concepts

Kris Siemionow
1   Department of Orthopaedic Surgery, University of Illinois at Chicago, Chicago, Illinois, United States
,
Marcin Tyrakowski
1   Department of Orthopaedic Surgery, University of Illinois at Chicago, Chicago, Illinois, United States
2   Department of Orthopaedics, Pediatric Orthopaedics and Traumatology, The Centre of Postgraduate Medical Education, Warsaw, Poland
,
Piotr Janusz
1   Department of Orthopaedic Surgery, University of Illinois at Chicago, Chicago, Illinois, United States
3   Spine Disorders Unit, Department of Pediatric Orthopedics and Traumatology, University of Medical Sciences in Poznan, Poznan, Poland
,
Andrzej Maciejczak
4   Department of Neurosurgery, University of Rzeszow, Tarnow, Poland
› Author Affiliations
Further Information

Publication History

26 June 2013

24 April 2015

Publication Date:
20 August 2015 (online)

Abstract

Spine surgery is a continuously evolving field. Traditional posterior midline approaches to the lumbar spine are associated with muscle injury. Common mechanisms of injury include ischemia, denervation, and mechanical disruption of tendinous attachments of lumbar muscles. Muscle injury may be documented with chemical markers (creatinine kinase, aldolase, proinflammatory cytokines), by imaging studies, or with muscle biopsy. Minimally disruptive surgical approaches to the spine have the potential to minimize the trauma to muscular structures and thus improve the outcomes of surgery. The impact of minimally invasive spinal surgery on long-term clinical outcomes remains unknown. State-of-the-art pathophysiology of minimally invasive spine surgery is presented in this review.

 
  • References

  • 1 Ward SR, Kim CW, Eng CM , et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am 2009; 91 (1) 176-185
  • 2 Donisch EW, Basmajian JV. Electromyography of deep back muscles in man. Am J Anat 1972; 133 (1) 25-36
  • 3 Cholewicki J, Panjabi MM, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 1997; 22 (19) 2207-2212
  • 4 Hu ZJ, Fang XQ, Fan SW. Iatrogenic injury to the erector spinae during posterior lumbar spine surgery: underlying anatomical considerations, preventable root causes, and surgical tips and tricks. Eur J Orthop Surg Traumatol 2014; 24 (2) 127-135
  • 5 Stark H, Fröber R, Schilling N. Intramuscular architecture of the autochthonous back muscles in humans. J Anat 2013; 222 (2) 214-222
  • 6 D'hooge R, Cagnie B, Crombez G, Vanderstraeten G, Achten E, Danneels L. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain: evaluation with muscle functional MRI. Clin J Pain 2013; 29 (3) 187-194
  • 7 Liu X, Yuan S, Tian Y. Modified unilateral laminotomy for bilateral decompression for lumbar spinal stenosis: technical note. Spine 2013; 38 (12) E732-E737
  • 8 Fortin M, Macedo LG. Multifidus and paraspinal muscle group cross-sectional areas of patients with low back pain and control patients: a systematic review with a focus on blinding. Phys Ther 2013; 93 (7) 873-888
  • 9 Macintosh JE, Valencia F, Bogduk N, Munro RR. The morphology of the human lumbar multifidus. Clin Biomech (Bristol, Avon) 1986; 1 (4) 196-204
  • 10 Jemmett RS, Macdonald DA, Agur AM. Anatomical relationships between selected segmental muscles of the lumbar spine in the context of multi-planar segmental motion: a preliminary investigation. Man Ther 2004; 9 (4) 203-210
  • 11 Danneels LA. Clinical anatomy of the lumbar multifidus. In: Vleeming A, Mooney V, Stoeckart R, , eds. Movement, Stability and Lumbopelvic Pain Integration of Research and Therapy. Philadelphia, PA: Elsevier, Churchill Livingstone; 2007: 85-94
  • 12 Macintosh JE, Bogduk N. 1987 Volvo award in basic science. The morphology of the lumbar erector spinae. Spine 1987; 12 (7) 658-668
  • 13 Macintosh JE, Bogduk N. The attachments of the lumbar erector spinae. Spine 1991; 16 (7) 783-792
  • 14 Bustami FM. A new description of the lumbar erector spinae muscle in man. J Anat 1986; 144: 81-91
  • 15 Delp SL, Suryanarayanan S, Murray WM, Uhlir J, Triolo RJ. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech 2001; 34 (3) 371-375
  • 16 Gejo R, Kawaguchi Y, Kondoh T , et al. Magnetic resonance imaging and histologic evidence of postoperative back muscle injury in rats. Spine 2000; 25 (8) 941-946
  • 17 Gille O, Jolivet E, Dousset V , et al. Erector spinae muscle changes on magnetic resonance imaging following lumbar surgery through a posterior approach. Spine 2007; 32 (11) 1236-1241
  • 18 Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 1999; 24 (10) 1023-1028
  • 19 Datta G, Gnanalingham KK, Peterson D , et al. Back pain and disability after lumbar laminectomy: is there a relationship to muscle retraction?. Neurosurgery 2004; 54 (6) 1413-1420; discussion 1420
  • 20 Hyun SJ, Kim YB, Kim YS , et al. Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci 2007; 22 (4) 646-651
  • 21 Kawaguchi Y, Matsui H, Gejo R, Tsuji H. Preventive measures of back muscle injury after posterior lumbar spine surgery in rats. Spine 1998; 23 (21) 2282-2287; discussion 2288
  • 22 Mayer TG, Vanharanta H, Gatchel RJ , et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine 1989; 14 (1) 33-36
  • 23 Motosuneya T, Asazuma T, Tsuji T, Watanabe H, Nakayama Y, Nemoto K. Postoperative change of the cross-sectional area of back musculature after 5 surgical procedures as assessed by magnetic resonance imaging. J Spinal Disord Tech 2006; 19 (5) 318-322
  • 24 Rantanen J, Hurme M, Falck B , et al. The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine 1993; 18 (5) 568-574
  • 25 Granata KP, Marras WS. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J Biomech 1993; 26 (12) 1429-1438
  • 26 Marras WS, Davis KG, Granata KP. Trunk muscle activities during asymmetric twisting motions. J Electromyogr Kinesiol 1998; 8 (4) 247-256
  • 27 Ren G, Eiskjaer S, Kaspersen J, Christensen FB, Rasmussen S. Microdialysis of paraspinal muscle in healthy volunteers and patients underwent posterior lumbar fusion surgery. Eur Spine J 2009; 18 (11) 1604-1609
  • 28 Kim KT, Lee SH, Suk KS, Bae SC. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 2006; 31 (6) 712-716
  • 29 Mattila M, Hurme M, Alaranta H , et al. The multifidus muscle in patients with lumbar disc herniation. A histochemical and morphometric analysis of intraoperative biopsies. Spine 1986; 11 (7) 732-738
  • 30 Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 1: Histologic and histochemical analyses in rats. Spine 1994; 19 (22) 2590-2597
  • 31 Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine 1994; 19 (22) 2598-2602
  • 32 Kawaguchi Y, Yabuki S, Styf J , et al. Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery. Spine 1996; 21 (22) 2683-2688
  • 33 Taylor H, McGregor AH, Medhi-Zadeh S , et al. The impact of self-retaining retractors on the paraspinal muscles during posterior spinal surgery. Spine 2002; 27 (24) 2758-2762
  • 34 Styf JR, Willén J. The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine 1998; 23 (3) 354-358
  • 35 Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine 2010; 35 (26, Suppl): S281-S286
  • 36 Lee GW, Jang SJ, Shin SM, Jang JH, Kim JD. Clinical and radiological outcomes following microscopic decompression utilizing tubular retractor or conventional microscopic decompression in lumbar spinal stenosis with a minimum of 10-year follow-up. Eur J Orthop Surg Traumatol 2014; 24 (Suppl. 01) S145-S151
  • 37 Rasouli MR, Rahimi-Movaghar V, Shokraneh F, Moradi-Lakeh M, Chou R. Minimally invasive discectomy versus microdiscectomy/open discectomy for symptomatic lumbar disc herniation. Cochrane Database Syst Rev 2014; 9: CD010328
  • 38 Dasenbrock HH, Juraschek SP, Schultz LR , et al. The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine 2012; 16 (5) 452-462
  • 39 Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res 2014; 472 (6) 1727-1737
  • 40 Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res 2014; 472 (6) 1711-1717
  • 41 Bogduk N. The innervation of the lumbar spine. Spine 1983; 8 (3) 286-293
  • 42 Regev GJ, Lee YP, Taylor WR, Garfin SR, Kim CW. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine 2009; 34 (11) 1239-1242
  • 43 Sihvonen T, Herno A, Paljärvi L, Airaksinen O, Partanen J, Tapaninaho A. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 1993; 18 (5) 575-581
  • 44 Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine 2005; 30 (1) 123-129
  • 45 Stevens KJ, Spenciner DB, Griffiths KL , et al. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 2006; 19 (2) 77-86
  • 46 Tsutsumimoto T, Shimogata M, Ohta H, Misawa H. Mini-open versus conventional open posterior lumbar interbody fusion for the treatment of lumbar degenerative spondylolisthesis: comparison of paraspinal muscle damage and slip reduction. Spine 2009; 34 (18) 1923-1928
  • 47 Wang HL, Lü FZ, Jiang JY, Ma X, Xia XL, Wang LX. Minimally invasive lumbar interbody fusion via MAST Quadrant retractor versus open surgery: a prospective randomized clinical trial. Chin Med J (Engl) 2011; 124 (23) 3868-3874
  • 48 Fan SW, Hu ZJ, Fang XQ, Zhao FD, Huang Y, Yu HJ. Comparison of paraspinal muscle injury in one-level lumbar posterior inter-body fusion: modified minimally invasive and traditional open approaches. Orthop Surg 2010; 2 (3) 194-200
  • 49 Arts M, Brand R, van der Kallen B, Lycklama à Nijeholt G, Peul W. Does minimally invasive lumbar disc surgery result in less muscle injury than conventional surgery? A randomized controlled trial. Eur Spine J 2011; 20 (1) 51-57
  • 50 Zander T, Rohlmann A, Klöckner C, Bergmann G. Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J 2003; 12 (4) 427-434
  • 51 Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 1990; 15 (11) 1142-1147
  • 52 Tuite GF, Stern JD, Doran SE , et al. Outcome after laminectomy for lumbar spinal stenosis. Part I: Clinical correlations. [published correction appears in J Neurosurg 1995;82(5):912]. J Neurosurg 1994; 81 (5) 699-706
  • 53 Tuite GF, Doran SE, Stern JD , et al. Outcome after laminectomy for lumbar spinal stenosis. Part II: Radiographic changes and clinical correlations. J Neurosurg 1994; 81 (5) 707-715
  • 54 Johnsson KE, Willner S, Johnsson K. Postoperative instability after decompression for lumbar spinal stenosis. Spine 1986; 11 (2) 107-110
  • 55 Bresnahan L, Ogden AT, Natarajan RN, Fessler RG. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques. Spine 2009; 34 (1) 17-23
  • 56 O'Toole JE. The future of minimally invasive spine surgery. Neurosurgery 2013; 60 (Suppl. 01) 13-19
  • 57 Zairi F, Arikat A, Allaoui M, Assaker R. Transforaminal lumbar interbody fusion: comparison between open and mini-open approaches with two years follow-up. J Neurol Surg A Cent Eur Neurosurg 2013; 74 (3) 131-135
  • 58 Wu X, Zhuang S, Mao Z, Chen H. Microendoscopic discectomy for lumbar disc herniation: surgical technique and outcome in 873 consecutive cases. Spine 2006; 31 (23) 2689-2694
  • 59 Sidhu GS, Henkelman E, Vaccaro AR , et al. Minimally invasive versus open posterior lumbar interbody fusion: a systematic review. Clin Orthop Relat Res 2014; 472 (6) 1792-1799
  • 60 Yadav YR, Parihar V, Namdev H, Agarwal M, Bhatele PR. Endoscopic interlaminar management of lumbar disc disease. J Neurol Surg A Cent Eur Neurosurg 2013; 74 (2) 77-81
  • 61 Nomura K, Yoshida M, Kawai M, Okada M, Nakao S. A novel microendoscopically assisted approach for the treatment of recurrent lumbar disc herniation: transosseous discectomy surgery. J Neurol Surg A Cent Eur Neurosurg 2014; 75 (3) 183-188
  • 62 Ee WW, Lau WL, Yeo W, Von Bing Y, Yue WM. Does minimally invasive surgery have a lower risk of surgical site infections compared with open spinal surgery?. Clin Orthop Relat Res 2014; 472 (6) 1718-1724
  • 63 Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ. Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg 2011; 54 (1) 33-37
  • 64 Wu RH, Fraser JF, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine 2010; 35 (26) 2273-2281
  • 65 Senker W, Meznik C, Avian A, Berghold A. The frequency of accidental dural tears in minimally invasive spinal fusion techniques. J Neurol Surg A Cent Eur Neurosurg 2013; 74 (6) 373-377
  • 66 Fourney DR, Dettori JR, Norvell DC, Dekutoski MB. Does minimal access tubular assisted spine surgery increase or decrease complications in spinal decompression or fusion?. Spine 2010; 35 (9, Suppl): S57-S65