Journal of Pediatric Biochemistry 2015; 05(01): 002-007
DOI: 10.1055/s-0035-1554783
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Role of Visfatin in Pregnancy, Complications and Procreation

Lucia Marseglia
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Sara Manti
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Gabriella D'Angelo
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Caterina Cuppari
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Vincenzo Salpietro
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Martina Filippelli
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Valeria Chirico
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Eloisa Gitto
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Carmelo Salpietro
1   Department of Pediatrics, University of Messina, Messina, Italy
,
Teresa Arrigo
1   Department of Pediatrics, University of Messina, Messina, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
03 July 2015 (online)

Abstract

Adipose tissue is considered an endocrine organ secreting numerous neuroendocrine and peripheral peptides, also known as “adipokines.” Although, the role of adipokines, precisely visfatin, is still controversial, it was recently discovered their involvement in different mechanisms, including metabolism, inflammation, and endocrine-immunologic system. A literature search of electronic databases was undertaken for the major studies published from 1957 to present. The databases searched were: PubMed, EMBASE, Orphanet, Midline, and Cochrane Library. This review aims to emphasize the molecular and endocrine mechanisms of visfatin and its role in fetal development. This review also reviews the role of adipocytokine in the pathogenesis of inflammatory-endocrine disorders. Further research will bring new insight into linkage between visfatin and humans, during pregnancy and perinatal period.

 
  • References

  • 1 Mamì C, Marseglia L, Manganaro R , et al. Serum levels of resistin and its correlation with adiponectin and insulin in healthy full term neonates. Early Hum Dev 2009; 85 (1) 37-40
  • 2 Rajala MW, Scherer PE. Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003; 144 (9) 3765-3773
  • 3 Arrigo T, Chirico V, Salpietro V , et al. High-mobility group protein B1: a new biomarker of metabolic syndrome in obese children. Eur J Endocrinol 2013; 168 (4) 631-638
  • 4 Chirico V, Cannavò S, Lacquaniti A , et al. Prolactin in obese children: a bridge between inflammation and metabolic-endocrine dysfunction. Clin Endocrinol (Oxf) 2013; 79 (4) 537-544
  • 5 d'Annunzio G, Vanelli M, Pistorio A , et al; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Insulin resistance and secretion indexes in healthy Italian children and adolescents: a multicentre study. Acta Biomed 2009; 80 (1) 21-28
  • 6 Kralisch S, Bluher M, Paschke R, Stumvoll M, Fasshauer M. Adipokines and adipocyte targets in the future management of obesity and the metabolic syndrome. Mini Rev Med Chem 2007; 7 (1) 39-45
  • 7 Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 1994; 14 (2) 1431-1437
  • 8 Fukuhara A, Matsuda M, Nishizawa M , et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307 (5708) 426-430
  • 9 Friebe D, Löffler D, Schönberg M , et al. Impact of metabolic regulators on the expression of the obesity associated genes FTO and NAMPT in human preadipocytes and adipocytes. PLoS ONE 2011; 6 (6) e19526
  • 10 Preiss J, Handler P. Enzymatic synthesis of nicotinamide mononucleotide. J Biol Chem 1957; 225 (2) 759-770
  • 11 Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 2004; 279 (49) 50754-50763
  • 12 Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. BioEssays 2003; 25 (7) 683-690
  • 13 Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol 2007; 23 (2) 164-170
  • 14 Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 2003; 15 (2) 241-246
  • 15 Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403 (6771) 795-800
  • 16 van der Veer E, Nong Z, O'Neil C, Urquhart B, Freeman D, Pickering JG. Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res 2005; 97 (1) 25-34
  • 17 Moynihan KA, Grimm AA, Plueger MM , et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2 (2) 105-117
  • 18 Revollo JR, Körner A, Mills KF , et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6 (5) 363-375
  • 19 Hug C, Lodish HF. Medicine. Visfatin: a new adipokine. Science 2005; 307 (5708) 366-367
  • 20 Garten A, Petzold S, Körner A, Imai S, Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 2009; 20 (3) 130-138
  • 21 Sethi JK. Is PBEF/visfatin/Nampt an authentic adipokine relevant to the metabolic syndrome?. Curr Hypertens Rep 2007; 9 (1) 33-38
  • 22 Körner A, Blüher S, Kapellen T , et al. Obesity in childhood and adolescence: a review in the interface between adipocyte physiology and clinical challenges. Hormones (Athens) 2005; 4 (4) 189-199
  • 23 Kover K, Tong PY, Watkins D , et al. Expression and regulation of Nampt in human islets. PLoS ONE 2013; 8 (3) e58767
  • 24 Bełtowski J. Apelin and visfatin: unique “beneficial” adipokines upregulated in obesity?. Med Sci Monit 2006; 12 (6) RA112-RA119
  • 25 Martos-Moreno GA, Kratzsch J, Körner A , et al. Serum visfatin and vaspin levels in prepubertal children: effect of obesity and weight loss after behavior modifications on their secretion and relationship with glucose metabolism. Int J Obes 2011; 35 (10) 1355-1362
  • 26 Mu J, Feng B, Ye Z , et al. Visfatin is related to lipid dysregulation, endothelial dysfunction and atherosclerosis in patients with chronic kidney disease. J Nephrol 2011; 24 (2) 177-184
  • 27 Taşçilar ME, Cekmez F, Meral C , et al. Evaluation of adipocytokines in obese children with insulin resistance. Turk J Pediatr 2011; 53 (3) 269-273
  • 28 Berndt J, Klöting N, Kralisch S , et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 2005; 54 (10) 2911-2916
  • 29 Chen MP, Chung FM, Chang DM , et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2006; 91 (1) 295-299
  • 30 Moschen AR, Kaser A, Enrich B , et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 2007; 178 (3) 1748-1758
  • 31 Dahl TB, Yndestad A, Skjelland M , et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 2007; 115 (8) 972-980
  • 32 Friebe D, Neef M, Kratzsch J , et al. Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia 2011; 54 (5) 1200-1211
  • 33 Adya R, Tan BK, Chen J, Randeva HS. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: its role in MMP-2/9 production and activation. Diabetes Care 2008; 31 (4) 758-760
  • 34 Nowell MA, Richards PJ, Fielding CA , et al. Regulation of pre-B cell colony-enhancing factor by STAT-3-dependent interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 2006; 54 (7) 2084-2095
  • 35 Jia SH, Li Y, Parodo J , et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 2004; 113 (9) 1318-1327
  • 36 Iqbal J, Zaidi M. TNF regulates cellular NAD+ metabolism in primary macrophages. Biochem Biophys Res Commun 2006; 342 (4) 1312-1318
  • 37 Ognjanovic S, Bryant-Greenwood GD. Pre-B-cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am J Obstet Gynecol 2002; 187 (4) 1051-1058
  • 38 Haider DG, Schaller G, Kapiotis S, Maier C, Luger A, Wolzt M. The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 2006; 49 (8) 1909-1914
  • 39 López-Bermejo A, Chico-Julià B, Fernàndez-Balsells M , et al. Serum visfatin increases with progressive beta-cell deterioration. Diabetes 2006; 55 (10) 2871-2875
  • 40 Mastorakos G, Valsamakis G, Papatheodorou DC , et al. The role of adipocytokines in insulin resistance in normal pregnancy: visfatin concentrations in early pregnancy predict insulin sensitivity. Clin Chem 2007; 53 (8) 1477-1483
  • 41 Kendal-Wright CE, Hubbard D, Bryant-Greenwood GD. Chronic stretching of amniotic epithelial cells increases pre-B cell colony-enhancing factor (PBEF/visfatin) expression and protects them from apoptosis. Placenta 2008; 29 (3) 255-265
  • 42 Cekmez F, Canpolat FE, Cetinkaya M , et al. Diagnostic value of resistin and visfatin, in comparison with C-reactive protein, procalcitonin and interleukin-6 in neonatal sepsis. Eur Cytokine Netw 2011; 22 (2) 113-117
  • 43 van Aerde JE, Wilke MS, Feldman M, Clandinin MT. Chapter 42, Accretion of Lipid in the Fetus and Newborn. In: Polin RA, Fox WW, Abman SH, , eds. Fetal and Neonatal Physiology. 4th ed. Philadelphia, PA: Elsevier Saunders; 2011: 454-469
  • 44 Blanco CL, Baillargeon JG, Morrison RL, Gong AK. Hyperglycemia in extremely low birth weight infants in a predominantly Hispanic population and related morbidities. J Perinatol 2006; 26 (12) 737-741
  • 45 Mazaki-Tovi S, Romero R, Kusanovic JP , et al. Visfatin in human pregnancy: maternal gestational diabetes vis-à-vis neonatal birthweight. J Perinat Med 2009; 37 (3) 218-231
  • 46 Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005; 6 (1) 13-21
  • 47 Mamì C, Manganaro R, Marseglia L, Saitta G, Gemelli M, Martino F. Plasma leptin, insulin, and neuropeptide Y response to feeding in newborn infants. Arch Dis Child Fetal Neonatal Ed 2006; 91 (5) F389
  • 48 Mamì C, Manganaro R, Saitta G, Marseglia L, Martino F, Gemelli M. Plasma leptin, insulin, and neuropeptide Y concentrations in infants. Arch Dis Child Fetal Neonatal Ed 2005; 90 (1) F86-F87
  • 49 Meral C, Cekmez F, Pirgon O , et al. The relationship between serum visfatin, adiponectin, and insulin sensitivity markers in neonates after birth. J Matern Fetal Neonatal Med 2011; 24 (1) 166-170
  • 50 Krzyzanowska K, Krugluger W, Mittermayer F , et al. Increased visfatin concentrations in women with gestational diabetes mellitus. Clin Sci (Lond) 2006; 110 (5) 605-609
  • 51 Mazaki-Tovi S, Romero R, Kim SK , et al. Could alterations in maternal plasma visfatin concentration participate in the phenotype definition of preeclampsia and SGA?. J Matern Fetal Neonatal Med 2010; 23 (8) 857-868
  • 52 Malamitsi-Puchner A, Briana DD, Boutsikou M, Kouskouni E, Hassiakos D, Gourgiotis D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics 2007; 119 (6) e1314-e1318
  • 53 Sethi JK, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes?. Trends Mol Med 2005; 11 (8) 344-347
  • 54 Ferreira AF, Rezende JC, Vaikousi E, Akolekar R, Nicolaides KH. Maternal serum visfatin at 11-13 weeks of gestation in gestational diabetes mellitus. Clin Chem 2011; 57 (4) 609-613
  • 55 Chan TF, Chen YL, Lee CH , et al. Decreased plasma visfatin concentrations in women with gestational diabetes mellitus. J Soc Gynecol Investig 2006; 13 (5) 364-367
  • 56 Pagano C, Pilon C, Olivieri M , et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J Clin Endocrinol Metab 2006; 91 (8) 3165-3170
  • 57 Zhaoxia L, Ying W, Danqing C. Changes in visfatin levels after oral glucose tolerance test in women with gestational diabetes mellitus. Diabetes Res Clin Pract 2012; 96 (3) e76-e79
  • 58 Fasshauer M, Blüher M, Stumvoll M, Tönessen P, Faber R, Stepan H. Differential regulation of visfatin and adiponectin in pregnancies with normal and abnormal placental function. Clin Endocrinol (Oxf) 2007; 66 (3) 434-439
  • 59 Harrington TA, Thomas EL, Frost G, Modi N, Bell JD. Distribution of adipose tissue in the newborn. Pediatr Res 2004; 55 (3) 437-441
  • 60 López-Bermejo A, de Zegher F, Díaz-Silva M, Vicente MP, Valls C, Ibáñez L. Cord serum visfatin at term birth: maternal smoking unmasks the relation to foetal growth. Clin Endocrinol (Oxf) 2008; 68 (1) 77-81
  • 61 Yanni D, Darendeliler F, Bas F, Kucukemre Aydin B, Coban A, Ince Z. The role of leptin, soluble leptin receptor, adiponectin and visfatin in insulin sensitivity in preterm born children in prepubertal ages. Cytokine 2013; 64 (1) 448-453
  • 62 Giapros VI, Kiortsis DN, Evagelidou EN , et al. Visfatin levels in prepubertal children born small or large for gestational age. Horm Metab Res 2012; 44 (2) 135-139
  • 63 Cekmez F, Canpolat FE, Pirgon O , et al. Adiponectin and visfatin levels in extremely low birth weight infants; they are also at risk for insulin resistance. Eur Rev Med Pharmacol Sci 2013; 17 (4) 501-506
  • 64 Ma Y, Cheng Y, Wang J, Cheng H, Zhou S, Li X. The changes of visfatin in serum and its expression in fat and placental tissue in pregnant women with gestational diabetes. Diabetes Res Clin Pract 2010; 90 (1) 60-65
  • 65 Yonezawa T, Haga S, Kobayashi Y, Takahashi T, Obara Y. Visfatin is present in bovine mammary epithelial cells, lactating mammary gland and milk, and its expression is regulated by cAMP pathway. FEBS Lett 2006; 580 (28-29) 6635-6643
  • 66 Bienertová-Vašků J, Bienert P, Zlámal F , et al. Visfatin is secreted into the breast milk and is correlated with weight changes of the infant after the birth. Diabetes Res Clin Pract 2012; 96 (3) 355-361
  • 67 Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet 2005; 365 (9461) 785-799
  • 68 Fasshauer M, Waldeyer T, Seeger J , et al. Serum levels of the adipokine visfatin are increased in pre-eclampsia. Clin Endocrinol (Oxf) 2008; 69 (1) 69-73
  • 69 Hu W, Wang Z, Wang H, Huang H, Dong M. Serum visfatin levels in late pregnancy and pre-eclampsia. Acta Obstet Gynecol Scand 2008; 87 (4) 413-418
  • 70 Ferreira AF, Rezende JC, de Cassia C Oliveira R, Akolekar R, Nicolaides KH. Maternal serum visfatin at 11–13 weeks' gestation in preeclampsia. J Hum Hypertens 2013; 27 (4) 261-264
  • 71 Milovanov AP, Sidorova IS, Solonitsyn AN, Borovkova EI. Immunohistochemical evaluation of the distribution of vascular endothelial growth factor in the placenta, placental bed in normal pregnancy and in women with preeclampsia [in Russian]. Arkh Patol 2008; 70 (3) 12-15
  • 72 Kim SC, Park MJ, Joo BS, Joo JK, Suh DS, Lee KS. Decreased expressions of vascular endothelial growth factor and visfatin in the placental bed of pregnancies complicated by preeclampsia. J Obstet Gynaecol Res 2012; 38 (4) 665-673
  • 73 Demir BC, Atalay MA, Ozerkan K, Doster Y, Ocakoglu G, Kucukkomurcu S. Maternal adiponectin and visfatin concentrations in normal and complicated pregnancies. Clin Exp Obstet Gynecol 2013; 40 (2) 261-267