Rofo 2015; 187(11): 980-989
DOI: 10.1055/s-0035-1553413
Review
© Georg Thieme Verlag KG Stuttgart · New York

Pre-, Intra- and Post-Operative Imaging of Cochlear Implants

Prä-, intra- und postoperative Bildgebung bei Cochlea-Implantat
T. J. Vogl
1   Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
A. Tawfik
2   Department of Diagnostic and Interventional Radiology, Mansoura University, Mansoura, Egypt
,
A. Emam
3   Department of Diagnostic and Interventional Radiology, University Hospital, Alexandria, Egypt
,
N. N. N. Naguib
1   Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
A. Nour-Eldin
4   Department of Radiology, University Hospital Cairo, Egypt
,
I. Burck
1   Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Germany
,
T. Stöver
5   Department of Otolaryngology, University Hospital of Frankfurt, Germany
› Author Affiliations
Further Information

Publication History

21 July 2014

19 June 2015

Publication Date:
01 September 2015 (online)

Abstract

The purpose of this review is to present essential imaging aspects in patients who are candidates for a possible cochlear implant as well as in postsurgical follow-up. Imaging plays a major role in providing information on preinterventional topography, variations and possible infections. Preoperative imaging using DVT, CT, MRI or CT and MRI together is essential for candidate selection, planning of surgical approach and exclusion of contraindications like the complete absence of the cochlea or cochlear nerve, or infection. Relative contraindications are variations of the cochlea and vestibulum. Intraoperative imaging can be performed by fluoroscopy, mobile radiography or DVT. Postoperative imaging is regularly performed by conventional X-ray, DVT, or CT. In summary, radiological imaging has its essential role in the pre- and post-interventional period for patients who are candidates for cochlear implants.

Key Points:

• Intraoperative imaging: radiography, DVT

• Preoperative imaging: DVT, CT, MRI

• Postoperative imaging: X-ray, DVT, CT

Citation Format:

• Vogl TJ, Tawfik A, Emam A et al. Pre-, Intra- and Post-Operative Imaging of Cochlear Implants. Fortschr Röntgenstr 2015; 187: 980 – 989

Zusammenfassung

Ziel dieser Übersichtsarbeit ist die Präsentation von bildgebenden Aspekten bei Patienten, die für eine mögliche Cochlea-Implantation infrage kommen sowie bei postchirurgischem Follow-up. Die Bildgebung spielt eine wichtige Rolle bezüglich der Informationen zu präinterventioneller Topografie, Variationen und möglichen Infektionen. Präoperative Bildgebung mittels DVT, CT, MRT oder CT und MRT zusammen ist notwendig für die Selektion der Patienten, für die Planung des chirurgischen Vorgehens und das Ausschließen von Kontraindikationen, wie z. B. das völlige Fehlen von Cochlea und dem Cochleanerv, oder Infektionen. Relative Kontraindikationen sind Variationen von Cochlea und Vestibulum. Intraoperative Bildgebung kann mittels Fluoroskopie, mobiler Radiografie oder DVT durchgeführt werden. Postoperative Bildgebung wird normalerweise mittels konventionellem Röntgen, DVT oder CT durchgeführt. Zusammenfassend spielt die radiologische Bildgebung eine wichtige Rolle in der prä- und postinterventionellen Phase bei Patienten, die für ein Cochlea-Implantat infrage kommen.

Kernaussagen:

• Intraoperatives Imaging: Röntgen, DVT

• Präoperatives Imaging: DVT, CT, MRT

• Postoperatives Imaging: X-Ray, DVT, CT

 
  • References

  • 1 Lenarz T, Laszig R. Cochlea-Implantat Versorgung und zentral-auditorische Implantate. Leitlinie der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V., Bonn. Register number 017-071. http://www.awmf.org/leitlinien/detail/ll/017-071.html Autorisiert für elektronische Publikation: AWMF online. May 2012. Accessed on line 18 April 2014.
  • 2 Witte RJ, Lane JI, Driscoll CL et al. Pediatric and adult cochlear implantation. Radiographics 2003; 23: 1185-1200
  • 3 Huang BY, Zdanski C, Castillo M. Pediatric sensorineural hearing loss, part 1: Practical aspects for neuroradiologists. AJNR Am J Neuroradiol 2012; 33: 211-217
  • 4 Morton CC, Nance WE. Newborn hearing screening: a silent revolution. N Engl J Med 2006; 354: 2151-2164
  • 5 Cureoglu S, Baylen MY, Paparella MM. Cochlear Otosclerosis. Curr Opin Otolarnygol Head Neck Surg 2010; 18: 357-362
  • 6 Huang BY, Zdanski C, Castillo M. Pediatric sensorineural hearing loss, part 2: syndromic and acquired causes. AJNR Am J Neuroradiol 2012; 33: 399-406
  • 7 Sampaio AL, Araujo MF, Oliveira CA. New criteria of indication and selection of patients to cochlear implant. Int J Otolaryngol 2011; 573968
  • 8 Richard C, Fayad JN, Doherty J et al. Round window versus cochleostomy technique in cochlear implantation: histologic findings. Otol Neurotol 2012; 33: 1181-1187
  • 9 Kang BJ, Kim AH. Comparison of cochlear implant performance after round window electrode insertion compared with traditional cochleostomy. Otolaryngol Head Neck Surg 2013; 148: 822-826
  • 10 Kronenberg J, Migirov L, Dagan T. Suprameatal approach: new surgical approach for cochlear implantation. J Laryngol Otol  2001; 115: 283-285
  • 11 Postelmans JT, Tange RA, Stokroos RJ et al. The suprameatal approach: a safe alternative surgical technique for cochlear implantation. Otol Neurotol  2010; 31: 196-203
  • 12 Jeong SW, Kim LS. Cochlear implantation in children with cochlear aplasia. Acta Otolaryngol 2012; 132: 910-915
  • 13 Kontorinis G, Goetz F, Giourgas A et al. Aplasia of the cochlea: radiologic assessment and options for hearing rehabilitation. Otol Neurotol 2013; 34: 1253-1260
  • 14 Aschendorff A. Imaging in cochlear implant patients. Laryngorhinootologie 2011; 90: S16-S21
  • 15 Trimble K, Blaser S, James AL et al. Computed tomography and/or magnetic resonance imaging before pediatric cochlear implantation? Developing an investigative strategy. Otol Neurotol  2007; 28: 317-324
  • 16 Joshi VM, Navlekar SK, Kishore GR et al. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics 2012; 32: 683-698
  • 17 Giesemann AM, Raab P, Lyutenski S et al. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil. Laryngoscope. 2014; 124: 751-754
  • 18 Huang BY, Roche JP, Buchman CA et al. Brain stem and inner ear abnormalities in children with auditory neuropathy spectrum disorder and cochlear nerve deficiency. AJNR Am J Neuroradiol 2010; 31: 1972-1979
  • 19 Jäger L, Bonell H, Liebl M et al. CT of the normal temporal bone: comparison of multi- and single-detector row CT. Radiology  2005; 235: 133-141
  • 20 Lane JI, Lindell EP, Witte RJ et al. Middle and inner ear: improved depiction with multiplanar reconstruction of volumetric CT data. Radiographics  2006; 26: 115-124
  • 21 Jeon EJ, Jun B, Song JN et al. Surgical and radiologic anatomy of a cochleostomy produced via posterior tympanotomy for cochlear implantation based on three-dimensional reconstructed temporal bone CT images. Surg Radiol Anat 2013; 35: 471-475
  • 22 Schwab SA, Eberle S, Adamietz B et al. Comparison of 128-section single-shot technique with conventional spiral multisection CT for imaging of the temporal bone. AJNR Am J Neuroradiol  2012; 33: 55-60
  • 23 Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol 2007; 17: 2767-2779
  • 24 Gupta R, Bartling SH, Basu SK et al. Experimental flat-panel high-spatial resolution volume CT of the temporal bone. AJNR Am J Neuroradiol 2004; 25: 1417-1424
  • 25 Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 2009; 30: 1088-1095
  • 26 Neri E, Caramella D, Cosottini M et al. High-resolution magnetic resonance and volume rendering of the labyrinth. Eur Radiol  2000; 10: 114-118
  • 27 Lane JI, Ward H, Witte RJ et al. 3-T imaging of the cochlear nerve and labyrinth in cochlear-implant candidates: 3D fast recovery fast spin-echo versus 3D constructive interference in the steady state techniques. AJNR Am J Neuroradiol  2004; 25: 618-622
  • 28 Casselman JW, Kuhweide R, Deimling M et al. Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 1993; 14: 47-57
  • 29 Glastonbury CM, Davidson HC, Harnsberger HR et al. Imaging findings of cochlear nerve deficiency. AJNR Am J Neuroradiol  2002; 23: 635-643
  • 30 Chaturvedi A, Mohan C, Mahajan SB et al. Imaging of cochlear implants. Ind J Radiol Imag 2006; 16: 385-392
  • 31 Krombach GA, Honnef D, Westhofen M et al. Imaging of congenital anomalies and acquired lesions of the inner ear. Eur Radiol 2008; 18: 319-330
  • 32 Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 1987; 97: 2-14
  • 33 Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope  2002; 112: 2230-2241
  • 34 Buchman CA, Copeland BJ, Yu KK et al. Cochlear implantation in children with congenital inner ear malformations. Laryngoscope 2004; 114: 309-316
  • 35 Vincneti V, Bacciu A, Guida M et al. Pediatric cochlear implantation: an update. Ital J Pediatr 2014; 40: 72
  • 36 Adunka O, Unkelbach MH, Mack MG et al. Predicting basal cochlear length for electric-acoustic stimulation. Arch Otolaryngol Head Neck Surg 2005; 131: 488-492
  • 37 Escude B, James J, Deguine O et al. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurootol 2006; 11: 27-33
  • 38 Connor SE, Bell DJ, O'Gorman R et al. CT and MR imaging cochlear distance measurements may predict cochlear implant length required for a 360 degrees insertion. AJNR Am J Neuroradiol 2009; 30: 1425-1430
  • 39 Cosetti MK, Troob SH, Latzman JM et al. An evidence-based algorithm for intraoperative monitoring during cochlear implantation. Otol Neurotol  2012; 33: 169-176
  • 40 Carelsen B, Grolman W, Tange R et al. Cochlear implant electrode array insertion monitoring with intra-operative 3D rotational X-ray. Clin Otolaryngol 2007; 32: 42-59
  • 41 Bloom JD, Rizzi MD, Germiller JA. Real-Time Intraoperative Computed Tomography to Assist Cochlear Implant Placement in the Malformed Inner Ear. Otol Neurotol 2009; 30: 23-26
  • 42 Yuan YY, Song YS, Chai CM et al. Intraoperative CT-guided cochlear implantation in congenital ear deformity. Acta Otolaryngol  2012; 132: 951-958
  • 43 Majdani O, Bartling SH, Leinung M et al. Image-guided minimal-invasive cochlear implantation--experiments on cadavers. Laryngorhinootologie  2008; 87: 18-22
  • 44 Stelter K, Ledderose G, Hempel JM et al. Image guided navigation by intraoperative CT scan for cochlear implantation. Comput Aided Surg  2012; 17: 153-160
  • 45 Bell B, Gerber N, Williamson T et al. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol Neurotol  2013; 34: 1284-1290
  • 46 Lawson JT, Cranley K, Toner JG. Digital imaging: a valuable technique for the postoperative assessment of cochlear implantation. Eur Radiol  1998; 8: 951-954
  • 47 Verbist BM, Frijns JH, Geleijns J et al. Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. AJNR Am J Neuroradiol 2005; 26: 424-429
  • 48 Arweiler-Harbeck D, Mönninghoff C, Greve J et al. Imaging of Electrode Position after Cochlear Implantation with Flat Panel CT. ISRN Otolaryngol  2012; 2012: 728205
  • 49 Todd NW, Ball TI. Interobserver agreement of coiling of Med-El cochlear implant: plain x-ray studies. Otol Neurotol 2004; 25: 271-274
  • 50 Bettman RH, vanOlphen AF, Zonneveld FW et al. Electrode insertion depth in cochlear implantees estimated during surgery, on plain film radiographs and with electrode function testing. Eur Arch Otorhinolaryngol  2003; 260: 536-540
  • 51 Xu J, Xu SA, Cohen LT et al. Cochlear view: postoperative radiography for cochlear implantation. Am J Otol 2000; 21: 49-56
  • 52 Harris R, Pepper C, Dennis L et al. A practical, single-view alternative to Stenver's for plain radiographic unilateral and bilateral post-cochlear implant position check. Cochlear Implants Int  2011; 12: 53-56
  • 53 Shpizner BA, Holliday RA, Roland JT et al. Postoperative imaging of the multichannel cochlear implant. AJNR Am J Neuroradiol 1995; 16: 1517-1524
  • 54 Whiting BR, Bae KT, Skinner MW. Cochlear implants: three-dimensional localization by means of coregistration of CT and conventional radiographs. Radiology 2001; 221: 543-549
  • 55 Verbist BM, Joemai RM, Teeuwisse WM et al. Evaluation of 4 multisection CT systems in postoperative imaging of a cochlear implant: a human cadaver and phantom study. AJNR Am J Neuroradiol 2008; 29: 1382-1388
  • 56 Whiting BR, Holden TA, Brunsden BS et al. Use of computed tomography scans for cochlear implants. J Digit Imaging 2008; 21: 323-328
  • 57 Kong WJ, Cheng HM, Ma H et al.  Evaluation of the implanted cochlear implant electrode by CT scanning with three-dimensional reconstruction. Acta Otolaryngol 2012; 132: 116-122
  • 58 Finley CC, Holden TA, Holden LK et al. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol  2008; 29: 920-928
  • 59 Long CJ, Holden TA, McClelland GH et al. Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol  2014; 15: 293-304
  • 60 Ruivo J, Mermuys K, Bacher K et al. Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 2009; 30: 299-303
  • 61 Marx M, Risi F, Escudé B et al. Reliability of cone beam computed tomography in scalar localization of the electrode array: a radio histological study. Eur Arch Otorhinolaryngol  2014; 271: 673-679
  • 62 Ying YL, Lin JW, Oghalai JS et al. Cochlear implant electrode misplacement: incidence, evaluation, and management. Laryngoscope 2013; 123: 757-766
  • 63 Portnoy WM, Mattucci K. Cochlear implants as a contraindication to magnetic resonance imaging. Ann Otol Rhinol Laryngol 1991; 100: 195-197
  • 64 Dyer Jr RK, Nakmali D, Dormer KJ. Magnetic resonance imaging compatibility and safety of the SOUNDTEC Direct System. Laryngoscope 2006; 116: 1321-1333
  • 65 Youssefzadeh S, Baumgartner W, Dorffner R et al. MR compatibility of Med EL cochlear implants: clinical testing at 1.0 T. J Comput Assist Tomogr 1998; 22: 346-350
  • 66 Baumgartner WD, Youssefzadeh S, Czerny C et al. Clinical utilization of magnetic resonance imaging for patients with cochlear implants. Wien Klin Wochenschr 2000; 112: 512-514
  • 67 Gubbels SP, McMenomey SO. Safety study of the Cochlear Nucleus 24 device with internal magnet in the 1.5 Tesla magnetic resonance imaging scanner. Laryngoscope 2006; 116: 865-871
  • 68 Dubrulle F, Vincent C, Varoquaux A et al. Guidelines for the performance of MRI in patients with cochlear implants. J Radiol 2011; 92: 872-877
  • 69 Broomfield SJ, Da Cruz M, Gibson WP. Cochlear implants and magnetic resonance scans: A case report and review. Cochlear Implants Int 2013; 14: 51-55
  • 70 Majdani O, Leinung M, Rau T et al. Demagnetization of cochlear implants and temperature changes in 3.0 T MRI environment. Otolaryngol Head Neck Surg 2008; 139: 833-839
  • 71 Dubrulle F, Sufana Iancu A, Vincent C et al. Cochlear implant with a non-removable magnet: preliminary research at 3-T MRI. Eur Radiol 2013; 23: 1510-1518