Rofo 2015; 187(10): 906-914
DOI: 10.1055/s-0035-1553125
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Radiation Dose Reduction in Computed Tomography-Guided Lung Interventions using an Iterative Reconstruction Technique

CT-gesteuerte Interventionen an der Lunge: Dosisreduktion mithilfe iterativer Rekonstruktionsalgorithmen
D. H. Chang
1   Department of Radiology, University Hospital of Cologne, Germany
,
S. Hiss
1   Department of Radiology, University Hospital of Cologne, Germany
,
D. Mueller
2   Clinical Science, Clinical Science Philips Healthcare GmbH, Munich, Germany
,
M. Hellmich
3   Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Germany
,
J. Borggrefe
1   Department of Radiology, University Hospital of Cologne, Germany
,
A. C. Bunck
1   Department of Radiology, University Hospital of Cologne, Germany
,
D. Maintz
1   Department of Radiology, University Hospital of Cologne, Germany
,
M. Hackenbroch
1   Department of Radiology, University Hospital of Cologne, Germany
› Author Affiliations
Further Information

Publication History

21 September 2014

16 April 2015

Publication Date:
17 June 2015 (online)

Abstract

Purpose: To compare the radiation doses and image qualities of computed tomography (CT)-guided interventions using a standard-dose CT (SDCT) protocol with filtered back projection and a low-dose CT (LDCT) protocol with both filtered back projection and iterative reconstruction.

Materials and Methods: Image quality and radiation doses (dose-length product and CT dose index) were retrospectively reviewed for 130 patients who underwent CT-guided lung interventions. SDCT at 120 kVp and automatic mA modulation and LDCT at 100 kVp and a fixed exposure were each performed for 65 patients. Image quality was objectively evaluated as the contrast-to-noise ratio and subjectively by two radiologists for noise impression, sharpness, artifacts and diagnostic acceptability on a four-point scale.

Results: The groups did not significantly differ in terms of diagnostic acceptability and complication rate. LDCT yielded a median 68.6 % reduction in the radiation dose relative to SDCT. In the LDCT group, iterative reconstruction was superior to filtered back projection in terms of noise reduction and subjective image quality. The groups did not differ in terms of beam hardening artifacts.

Conclusion: LDCT was feasible for all procedures and yielded a more than two-thirds reduction in radiation exposure while maintaining overall diagnostic acceptability, safety and precision. The iterative reconstruction algorithm is preferable according to the objective and subjective image quality analyses.

Key Points:

• Implementation of a low-dose computed tomography (LDCT) protocol for lung interventions is feasible and safe.

• LDCT protocols yield a significant reduction (more than 2/3) in radiation exposure.

• Iterative reconstruction algorithms considerably improve the image quality in LDCT protocols.

Citation Format:

• Chang DH, Hiss S, Mueller D et al. Radiation Dose Reduction in Computed Tomography-Guided Lung Interventions using an Iterative Reconstruction Technique. Fortschr Röntgenstr 2015; 187: 906 – 914

Zusammenfassung

Ziel: Vergleich der Dosis und Bildqualität bei CT-gesteuerten Interventionen unter Verwendung eines Standarddosisprotokolls (SDCT) mit gefilterter Rückprojektion (FBP) und eines Niedrigdosisprotokolls (LDCT) mit FBP und iterativer Rekonstruktion (IR).

Material und Methoden: Retrospektiv wurde die Bildqualität und Strahlendosis (Dosislängenprodukt und CTDI) bei 130 Patienten, die sich einer CT-gesteuerten Lungenintervention unterzogen ausgewertet. SDCT wurde bei 65 Patienten mit einer automatischen Dosismodulation und 120 kVp, LDCT bei 65 Patienten mit einer fixierten mAs und 100 kVp durchgeführt. Die Bildqualität wurde objektiv mittels Kontrast-zu-Rausch-Verhältnis sowie subjektiv anhand einer 4-Punkte-Skala von zwei Radiologen bezüglich Bildrauschen, Schärfe, Artefakte und diagnostische Akzeptanz bewertet.

Ergebnisse: Es gab keine signifikanten Unterschiede bezüglich der diagnostischen Akzeptanz und der Komplikationsrate in beiden Gruppen. Im Vergleich zu SDCT erreichte LDCT eine Dosisreduktion im Median um 68,6 %. Die Implementation der iterativen Rekonstruktion war bezüglich der Rauschunterdrückung und der subjektiven Bildqualität der FBP überlegen. Bezüglich der Aufhärtungsartefakte ergab sich kein Unterschied zwischen beiden Gruppen.

Schlussfolgerung: Das LDCT-Protokoll erzielt eine signifikante Reduktion der Strahlenexposition um mehr als 2/3, während die diagnostische Sicherheit und Präzision beibehalten werden. Die iterative Rekonstruktion ist, aus der Analyse der objektiven und subjektiven Auswertung der Bildqualität zu bevorzugen.

Kernaussagen:

• Niedrigdosisprotokolle (LDCT) sind bei CT-gesteuerten Interventionen an der Lunge bezüglich diagnostischer Akzeptanz, Sicherheit und Präzision gut durchführbar.

• Die Verwendung von LDCT zeigt in unserer Studie eine Reduktion der Strahlendosis um mehr als 2/3 im Vergleich zu einem Standarddosisprotokoll.

• Die Implementation iterativer Rekonstruktionsalgorithmen bei LDCT verbessert die objektive und subjektive Bildqualität.

 
  • References

  • 1 Manhire A, Charig M, Clelland C et al. Guidelines for radiologically guided lung biopsy. Thorax 2003; 58: 920-936
  • 2 Prosch H, Stadler A, Schilling M et al. CT fluoroscopy-guided vs. multislice CT biopsy mode-guided lung biopsies: accuracy, complications and radiation dose. Eur J Radiol 2012; 81: 1029-1033
  • 3 Inui N, Chida K, Suda T et al. Pulmonary cryptococcosis exhibiting diffuse multiple nodular shadows. Nihon Kokyuki Gakkai Zasshi 1998; 36: 1038-1042
  • 4 Yeow KM, Tsay PK, Cheung YC et al. Factors affecting diagnostic accuracy of CT-guided coaxial cutting needle lung biopsy: retrospective analysis of 631 procedures. J Vasc Intervent Radiol 2003; 14: 581-588
  • 5 Noßke D. Publication of updated diagnostic reference levels for diagnostic and interventional X-ray examinations. German Federal Gazette 2010; Available via http://www.bfs.de/de/ion/medizin/referenzwerte02.pdf
  • 6 Heyer CM, Mohr PS, Lemburg SP et al. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: Prospective randomized study. Radiology 2007; 245: 577-583
  • 7 Kalra MK, Maher MM, Sahani DV et al. Low-dose CT of the abdomen: Evaluation of image improvement with use of noise reduction filters pilot study. Radiology 2003; 228: 251-256
  • 8 Katsura M, Matsuda I, Akahane M et al. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 2012; 22: 1613-1623
  • 9 Ohno Y, Takenaka D, Kanda T et al. Adaptive Iterative Dose Reduction Using 3D Processing for Reduced- and Low-Dose Pulmonary CT: Comparison With Standard-Dose CT for Image Noise Reduction and Radiological Findings. Am J Roentgenol 2012; 199: W477-W485
  • 10 Leipsic J, Labounty TM, Heilbron B et al. Adaptive statistical iterative reconstruction: Assessment of image noise and image quality in coronary CT angiography. Am J Roentgenol 2010; 195: 649-654
  • 11 Leipsic J, Nguyen G, Brown J et al. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. Am J Roentgenol 2010; 195: 1095-1099
  • 12 Prakash P, Kalra MK, Digumarthy SR et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: Initial experience. J Comput Assist Tomogr 2010; 34: 40-45
  • 13 Stamm G, Nagel HD. CT-Expo – a Novel Program for Dose Evaluation in CT. Fortschr Röntgenstr 2002; 174: 1570-1576
  • 14 American Association of Physicists in Medicine (AAPM). The measurement, reporting, and management of radiation dose in CT: report of AAPM Task Group 23 of the Diagnostic Imaging Council CT Committee—January 2008. College Park. MD: AAPM, 2007: AAPM report no. 96
  • 15 Sacks D, McClenny TE, Cardella JF et al. Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol 2003; 9 Pt 2: 199-202
  • 16 Hausler U, Czarwinski R, Brix G et al. Radiation exposure of medical staff from interventional x-ray procedures: a multicentre study. Eur Radiol 2009; 19: 2000-2008
  • 17 Buls N, Pagés J, de Mey J et al. Evaluation of patient and staff doses during various CT fluoroscopy guided interventions. Health Phys 2003; 85: 165-173
  • 18 Rathmann N, Haeusler U, Diezler P et al. Evaluation of Radiation Exposure of Medical Staff During CT-Guided Interventions. J Am Coll Radiol 2015; 12: 82-89
  • 19 Teeuwisse WM, Geleijns J, Broerse JJ et al. Patient and staff dose during CT guided biopsy, drainage and coagulation. Br J Radiol 2001; 74: 720-726
  • 20 Whitby M, Martin CJ. A study of the distribution of dose across the hands of interventional radiologists and cardiologists. Br J Radiol 2005; 78: 219-229
  • 21 Burgess AE, Burhenne HJ. Finger doses in special procedures. Br J Radiol 1984; 57: 650-651
  • 22 Singh S, Kalra MK, Gilman MD et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: A pilot study. Radiology 2011; 259: 565-573
  • 23 Higuchi K, Nagao M, Matsuo Y et al. Detection of ground-glass opacities by use of hybrid iterative reconstruction (iDose) and low-dose 256-section computed tomography: a phantom study. Radiol Phys Technol 2013; 6: 299-304
  • 24 Willemink MJ, Borstlap J, Takx RA et al. The effects of computed tomography with iterative reconstruction on solid pulmonary nodule volume quantification. PLoS One 2013; DOI: 10.1371/journal.pone.0058053.
  • 25 Hosch W, Stiller W, Mueller D et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur J Radiol 2012; 81: 3568-3576