Fortschr Neurol Psychiatr 2015; 83(06): 344-348
DOI: 10.1055/s-0035-1553051
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Wirkung der Farbtemperatur des Lichts auf Konzentration und Kreativität

Effect of Light Color Temperature on Human Concentration and Creativity
W. U. Weitbrecht
1   Neurologische Klinik, KKH Gummersbach – Lehrkrankenhaus Universität Köln, Gummersbach
,
H. Bärwolff
2   Analog- und Optoelektronik, Institut für Elektrotechnik & Information Engineering, Fachhochschule Köln, Campus Gummersbach
,
A. Lischke
2   Analog- und Optoelektronik, Institut für Elektrotechnik & Information Engineering, Fachhochschule Köln, Campus Gummersbach
,
S. Jünger
2   Analog- und Optoelektronik, Institut für Elektrotechnik & Information Engineering, Fachhochschule Köln, Campus Gummersbach
› Institutsangaben
Weitere Informationen

Publikationsverlauf

29. Juli 2014

26. April 2015

Publikationsdatum:
22. Juni 2015 (online)

Zusammenfassung

Licht hat unterschiedliche biologische Effekte in Abhängigkeit von Farbtemperatur und Beleuchtungsstärke. Dadurch ergeben sich teils scheinbar widersprüchliche Wirkungen. Wir untersuchten an 50 Studenten und Mitarbeitern der Fachhochschule Köln, Campus Gummersbach (Alter: 30,9 +/– 10,8 Jahre) die Frage des Einflusses der Farbtemperatur (3000 K, 4500 K, 6000 K) auf Konzentration und Kreativität bei konstanter hoher Beleuchtungsstärke (1000 Lux). Als Testverfahren wurden eingesetzt: d2-bq-Test, Kreativitätstest (mittlere Zahl der Einfälle zu 5 Themen), Worttest, Logiktest. Zusätzlich wurden die Probanden mit einem Fragebogen nach ihrer Bewertung der Qualität des Lichts befragt. Um zirkadiane Einflüsse und Einflüsse des Lerneffekts auf das Ergebnis auszuschließen, wurden die 50 Testpersonen immer zur gleichen Tageszeit und mit zufälliger Reihenfolge der Farbtemperatur untersucht. Es ergab sich, dass bei warmem Licht (3000 K) die Kreativität und bei kälterem (4500 K, 6000 K) die Konzentrationsleistung besser war. Licht mit höherem Blauanteil (6000 K) wurde bei gleicher Beleuchtungsstärke als heller empfunden als Licht mit höherem Rotanteil (3500 K).

Abstract

Light has different biological effects depending on the color temperature and intensity. This may be the reason for its differing effects. We investigated the influence of color temperature (3000 K, 4500 K, 6000 K) under constant high intensity (1000 Lux) on concentration and creativity of 50 students and employees of the Cologne University of Applied Sciences, Campus Gummersbach (age: 30.9 +/– 10.8y.). As test method we used d2-bq-test, creativity test (mean of the number of ideas on 5 themes), word test and logic test. In addition, test subjects were asked to evaluate their impression of light by means of a questionnaire. To exclude the circadian influence and learning effects on the result, we performed tests at the same time of the day using a random order of color temperature. We found that creativity was better under warm light (3000 K) than under colder light (4500 K, 6000 K). Concentration was best under cold light (6000 K). Under the same light intensity conditions, subjects judged blue light (6000 K) to be brighter than red light (3000 K).

 
  • Literatur

  • 1 Sasseville A, Hébert M. Using blue-green light at night and blue-blockers during the day to improves adaptation to night work: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 1236-1242
  • 2 Cajochen C, Münch M, Kobialka S et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 2005; 90: 1311-1316
  • 3 Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci 2009; 13: 429-438
  • 4 Figueiro MG, Bullough JD, Bierman A et al. On light as an alerting stimulus at night. Acta Neurobiol Exp (Wars) 2007; 67: 171-178
  • 5 Rahman SA, Flynn-Evans EE, Aeschbach D et al. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep 2014; 37: 271-281
  • 6 An M, Huang J, Shimomura Y et al. Time-of-day-dependent effects of monochromatic light exposure on human cognitive function. J Physiol Anthropol 2009; 28: 217-223
  • 7 Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 2003; 88: 4502-4505
  • 8 Morita T, Tokura H. The influence of different wavelengths of light on human biological rhythms. Appl Human Sci 1998; 17: 91-96
  • 9 Reiter RJ, Richardson BA. Some perturbations that disturb the circadian melatonin rhythm. Chronobiol Int 1992; 9: 314-321
  • 10 Wright HR, Lack LC. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int 2001; 18: 801-808
  • 11 Morita T, Tokura H. Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans. Appl Human Sci 1996; 15: 243-246
  • 12 Morita T, Tokura H, Wakamura T et al. Effects of the morning irradiation of light with different wavelengths on the behavior of core temperature and melatonin in humans. Appl Human Sci 1997; 16: 103-105
  • 13 Münch M, Kobialka S, Steiner R et al. Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. Am J Physiol Regul Integr Comp Physiol 2006; 290: 1421-1428
  • 14 Wahnschaffe A, Haedel S, Rodenbeck A et al. Out of the lab and into the bathroom: evening short-term exposure to conventional light suppresses melatonin and increases alertness perception. Int J Mol Sci 2013; 14: 2573-2589
  • 15 Wright HR, Lack LC, Partridge KJ. Light emitting diodes can be used to phase delay the melatonin rhythm. J Pineal Res 2001; 31: 350-355
  • 16 Higuchi S, Motohashi Y, Ishibashi K et al. Influence of eye colors of Caucasians and Asians on suppression of melatonin secretion by light. Am J Physiol Regul Integr Comp Physiol 2007; 292: 2352-2356
  • 17 Brainard GC, Sliney D, Hanifin JP et al. Sensitivity of the human circadian system to short-wavelength (420-nm) light. J Biol Rhythms 2008; 23: 379-386
  • 18 Revell VL, Skene DJ. Light-induced melatonin suppression in humans with polychromatic and monochromatic light. Chronobiol Int 2007; 24: 1125-1137
  • 19 Smith MR, Eastman CI. Phase delaying the human circadian clock with blue-enriched polychromatic light. Chronobiol Int 2009; 26: 709-725
  • 20 Figueiro MG, Bierman A, Plitnick B et al. Preliminary evidence that both blue and red light can induce alertness at night. BMC Neurosci 2009; 10: 105
  • 21 Papamichael C, Skene DJ, Revell VL. Human nonvisual responses to simultaneous presentation of blue and red monochromatic light. J Biol Rhythms 2012; 27: 70-78
  • 22 Iskra-Golec I, Smith L. Bright light effects on ultradian rhythms in performance on hemisphere-specific tasks. Appl Ergon 2011; 42: 256-260
  • 23 Vandewalle G, Archer SN, Wuillaume C et al. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis. J Biol Rhythms 2011; 26: 249-259
  • 24 Wirz-Justice A, Bader A, Frisch U et al. A randomized, double-blind, placebo-controlled study of light therapy for antepartum depression. J Clin Psychiatry 2011; 72: 986-993
  • 25 Lieverse R, Van Someren EJ, Nielen MM et al. Bright light treatment in elderly patients with nonseasonal major depressive disorder: a randomized placebo-controlled trial. Arch Gen Psychiatry 2011; 68: 61-70
  • 26 Gooley JJ, Rajaratnam SM, Brainard GC et al. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2010; 2: 31-33
  • 27 West KE, Jablonski MR, Warfield B et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol (1985) 2011; 110: 619-626
  • 28 Figueiro MG, Rea MS. The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol 2010; 2010: 829351
  • 29 Ackermann K, Sletten TL, Revell VL et al. Blue-light phase shifts PER3 gene expression in human leukocytes. Chronobiol Int 2009; 26: 769-779
  • 30 Cajochen C, Jud C, Münch M et al. Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans. Eur J Neurosci 2006; 23: 1082-1086
  • 31 Chen A, Du L, Xu Y et al. The effect of blue light exposure on the expression of circadian genes: bmal1 and cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates. Pediatr Res 2005; 58: 1180-1184
  • 32 Kaida K, Takeda Y, Tsuzuki K. Can a short nap and bright light function as implicit learning and visual search enhancers?. Ergonomics 2012; 55: 1340-1349
  • 33 Brøndsted AE, Lundeman JH, Kessel L. Short wavelength light filtering by the natural human lens and IOLs – implications for entrainment of circadian rhythm. Acta Ophthalmol 2013; 91: 52-57
  • 34 Daneault V, Hébert M, Albouy G et al. Aging reduces the stimulating effect of blue light on cognitive brain functions. Sleep 2014; 37: 85-96
  • 35 Herljevic M, Middleton B, Thapan K et al. Light-induced melatonin suppression: age-related reduction in response to short wavelength light. Exp Gerontol 2005; 40: 237-242
  • 36 Sletten TL, Revell VL, Middleton B et al. Age-related changes in acute and phase-advancing responses to monochromatic light. J Biol Rhythms 2009; 24: 73-84
  • 37 Turner PL, Mainster MA. Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol 2008; 92: 1439-1444
  • 38 Kessel L, Siganos G, Jørgensen T et al. Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep 2011; 34: 1215-1219
  • 39 Ayaki M, Negishi K, Tsubota K. Rejuvenation effects of cataract surgery with UV blocking intra-ocular lens on circadian rhythm and gait speed. Rejuvenation Res 2014; 17: 359-365
  • 40 Turner PL, Van Someren EJ, Mainster MA. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery. Sleep Med Rev 2010; 14: 269-280
  • 41 Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand 2006; 84: 4-15
  • 42 Roberts JE. Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye Contact Lens 2011; 37: 246-249
  • 43 Hesse J, Schrader HC. Testtraining Konzentrationsvermögen. Frankfurt a.M: Eichborn.exakt; 1999: 7-15 , 27 – 30
  • 44 Hesse J, Schrader HC. Testtraining Logik. Stark Verlagsgesellschaft 2012; 15-20
  • 45 Moosbrugger H, Kelava A. Testtheorie und Fragebogenkonstruktion. 2. Auflage. Berlin Heidelberg: Springer; 2012
  • 46 Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Lawrence Erlabaum Associates; 1988
  • 47 Pridmore RW. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues. PLoS One 2013; 8: e77134
  • 48 Gudd N, Rudolf H, Schierz C. Subjektive Bewertung der Helligkeit in Räumen mit unterschiedlichen Lichtfarben. Tagung LICHT 2008, 10. – 13.9.08 Ilmenau, Tagungsband S. 63 – 70
  • 49 Park NK, Cheryl AF. Retail store Lightning for elderly consumers: an experimetal approach. Fam Consum Sci Res J 2007; 35: 316-337
  • 50 Chellappa SL, Steiner R, Blattner P et al. Non-visual effects of light on melatonin, alertness and cognitive performance:can blue-enriched light keep us alert?. PLoS One 2011; 6: e16429
  • 51 Knez I. Effects of colour of light on nonvisual psychological processes. J Envir Psychol 2001; 21: 201-208