Aktuelle Urol 2015; 46(03): 227-235
DOI: 10.1055/s-0035-1549992
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Charakterisierung des Urothelkarzinoms der Harnblase: Ist ein klinischer Nutzen in Sicht?

Molecular Characterisation of Urothelial Bladder Cancer: Will it Improve Patient Care?
P. Erben
1   Klinik für Urologie, Universitätsmedizin Mannheim, Medizinische Fakultät der Universität Heidelberg
,
A. Hartmann
2   Pathologisches Institut, Universität Erlangen-Nürnberg
,
C. Bolenz
1   Klinik für Urologie, Universitätsmedizin Mannheim, Medizinische Fakultät der Universität Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
12 June 2015 (online)

Zusammenfassung

Das Urothelkarzinom der Harnblase ist trotz multimodaler Therapie mit einer hohen Rezidiv- und krankheitsspezifischen Mortalitätsrate behaftet. Diese konnte während der letzten beiden Jahrzehnte nicht signifikant gesenkt werden. Die aktuelle histopathologische Klassifikation und klinische Risikostratifizierung ist ungenau. Daher könnte ein besseres Verständnis der Tumorbiologie von entscheidender Bedeutung für therapeutische Verbesserungen sein. Erkenntnisse über die Tumorbiologie können in molekulare Marker, die sowohl die Diagnostik als auch das Therapiemonitoring verbessern können, übersetzt werden. Es wurden bereits diverse mögliche Zielstrukturen auf molekularer Ebene identifiziert. Dazu gehören vielversprechende Zielstrukturen wie FGFR3 (Fibroblast growth factor receptor 3), HER2 (Human epidermal growth factor receptor 2) und PD1/PDL1 (Programmed cell death-1). Diese müssen in klinischen Studien validiert werden. Wir berichten über die Molekularbiologie des Urothelkarzinoms der Harnblase und zeigen daraus resultierende mögliche klinische Anwendungen von molekularen Markern und zielgerichteten Therapien auf.

Abstract

Urothelial bladder cancer is characterised by high recurrence and progression rates despite multimodal treatment. Only slight improvements have been achieved during the last decades. The current histopathological classification and clinical risk stratification tools are inaccurate. Hence, a better understanding of the tumour biology is essential for the improvement of patient care. The molecular characterisation of bladder cancer may be translated into useful diagnostic and predictive biomarkers. Many potential therapeutic targets have been identified such as FGFR3 (Fibroblast growth factor receptor 3), HER2 (human epidermal growth factor receptor 2) and PD1/PDL1 (programmed cell death-1). They need validation in clinical trials. We now review the molecular biology of urothelial bladder carcinoma and discuss clinical applications of biomarkers and targeted therapies.

 
  • Literatur

  • 1 Jemal A, Bray F, Center MM et al. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90
  • 2 Ferlay J, Shin HR, Bray F et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-2917
  • 3 Prout Jr. GR, Barton BA, Griffin PP et al. Treated history of noninvasive grade 1 transitional cell carcinoma. The National Bladder Cancer Group. J Urol 1992; 148: 1413-1419
  • 4 Sylvester RJ, van der Meijden AP, Oosterlinck W et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006; 49: 466-465 discussion 475–467
  • 5 Grossman HB, Natale RB, Tangen CM et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 2003; 349: 859-866
  • 6 Sternberg CN, Bellmunt J, Sonpavde G et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Chemotherapy for urothelial carcinoma-neoadjuvant and adjuvant settings. Eur Urol 2013; 63: 58-66
  • 7 Bellmunt J, von der Maase H, Mead GM et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC Intergroup Study 30987. J Clin Oncol 2012; 30: 1107-1113
  • 8 Svatek RS, Hollenbeck BK, Holmang S et al. The Economics of Bladder Cancer: Costs and Considerations of Caring for This Disease. Eur Urol 2014; DOI: S0302-2838(14)00018-910.1016/j.eururo.2014.01.006.
  • 9 Gore JL, Gilbert SM. Improving bladder cancer patient care: a pharmacoeconomic perspective. Expert review of anticancer therapy 2013; 13: 661-668
  • 10 Tosoni I, Wagner U, Sauter G et al. Clinical significance of interobserver differences in the staging and grading of superficial bladder cancer. BJU international 2000; 85: 48-53
  • 11 Cheng L, Montironi R, Davidson DD et al. Staging and reporting of urothelial carcinoma of the urinary bladder. Mod Pathol 2009; 22 (Suppl. 02) S70-S95
  • 12 Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 2015; 15: 25-41
  • 13 Lotan Y, Bagrodia A, Passoni N et al. Prospective evaluation of a molecular marker panel for prediction of recurrence and cancer-specific survival after radical cystectomy. Eur Urol 2013; 64: 465-471
  • 14 Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 2009; 297: F1477-F1501
  • 15 Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 2005; 5: 713-725
  • 16 McConkey DJ, Lee S, Choi W et al. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression. Urologic oncology 2010; 28: 429-440
  • 17 Bakkar AA, Wallerand H, Radvanyi F et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 2003; 63: 8108-8112
  • 18 Obermann EC, Meyer S, Hellge D et al. Fluorescence in situ hybridization detects frequent chromosome 9 deletions and aneuploidy in histologically normal urothelium of bladder cancer patients. Oncol Rep 2004; 11: 745-751
  • 19 Hartmann A, Schlake G, Zaak D et al. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res 2002; 62: 809-818
  • 20 van Oers JM, Adam C, Denzinger S et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer 2006; 119: 1212-1215
  • 21 Fan Y, Shen B, Tan M et al. TGF-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res 2014; 20: 1531-1541
  • 22 Sapre N, Herle P, Anderson PD et al. Molecular biomarkers for predicting outcomes in urothelial carcinoma of the bladder. Pathology 2014; 46: 274-282
  • 23 Ploussard G, Dubosq F, Soliman H et al. Prognostic value of loss of heterozygosity at chromosome 9p in non-muscle-invasive bladder cancer. Urology 2010; 76: e513-e518
  • 24 Bartoletti R, Cai T, Nesi G et al. Loss of P16 expression and chromosome 9p21 LOH in predicting outcome of patients affected by superficial bladder cancer. J Surg Res 2007; 143: 422-427
  • 25 Majewski T, Lee S, Jeong J et al. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Lab Invest 2008; 88: 694-721
  • 26 Hoglund M. The bladder cancer genome; chromosomal changes as prognostic makers, opportunities, and obstacles. Urologic oncology 2012; 30: 533-540
  • 27 Lindgren D, Sjodahl G, Lauss M et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One 2012; 7: e38863
  • 28 Hurst CD, Platt FM, Taylor CF et al. Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin Cancer Res 2012; 18: 5865-5877
  • 29 Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet 2013; 22: 795-803
  • 30 [Anonym] . Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014; 507: 315-322
  • 31 Cappellen D, De Oliveira C, Ricol D et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 1999; 23: 18-20
  • 32 Hernandez S, Lopez-Knowles E, Lloreta J et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 2006; 24: 3664-3671
  • 33 van Rhijn BW, Burger M, Lotan Y et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol 2009; 56: 430-442
  • 34 Tomlinson DC, Baldo O, Harnden P et al. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 2007; 213: 91-98
  • 35 Jebar AH, Hurst CD, Tomlinson DC et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 2005; 24: 5218-5225
  • 36 Knowles MA, Williamson M. Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing. Cancer Res 1993; 53: 133-139
  • 37 Malats N, Bustos A, Nascimento CM et al. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol 2005; 6: 678-686
  • 38 Shariat SF, Bolenz C, Karakiewicz PI et al. p53 expression in patients with advanced urothelial cancer of the urinary bladder. BJU international 2010; 105: 489-495
  • 39 Mitra AP, Hansel DE, Cote RJ. Prognostic value of cell-cycle regulation biomarkers in bladder cancer. Semin Oncol 2012; 39: 524-533
  • 40 Hurst CD, Tomlinson DC, Williams SV et al. Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene 2008; 27: 2716-2727
  • 41 Lopez-Beltran A, Requena MJ, Luque RJ et al. Cyclin D3 expression in primary Ta/T1 bladder cancer. J Pathol 2006; 209: 106-113
  • 42 Iyer G, Hanrahan AJ, Milowsky MI et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 2012; 338: 221
  • 43 Guo Y, Chekaluk Y, Zhang J et al. TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. J Pathol 2013; 230: 17-27
  • 44 Sjodahl G, Lauss M, Gudjonsson S et al. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One 2011; 6: e18583
  • 45 Adachi H, Igawa M, Shiina H et al. Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol 2003; 170: 601-604
  • 46 Aveyard JS, Skilleter A, Habuchi T et al. Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 1999; 80: 904-908
  • 47 Kagan J, Liu J, Stein JD et al. Cluster of allele losses within a 2.5 cM region of chromosome 10 in high-grade invasive bladder cancer. Oncogene 1998; 16: 909-913
  • 48 Platt FM, Hurst CD, Taylor CF et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res 2009; 15: 6008-6017
  • 49 Puzio-Kuter AM, Castillo-Martin M, Kinkade CW et al. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev 2009; 23: 675-680
  • 50 Sapre N, Anderson PD, Costello AJ et al. Gene-based urinary biomarkers for bladder cancer: an unfulfilled promise?. Urologic oncology 2014; 32: e49-e17
  • 51 Sokolova IA, Halling KC, Jenkins RB et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn 2000; 2: 116-123
  • 52 Chung W, Bondaruk J, Jelinek J et al. Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. Cancer Epidemiol Biomarkers Prev 2011; 20: 1483-1491
  • 53 Kandimalla R, Masius R, Beukers W et al. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine. Clin Cancer Res 2013; 19: 4760-4769
  • 54 Karam JA, Lotan Y, Karakiewicz PI et al. Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 2007; 8: 128-136
  • 55 Shariat SF, Zlotta AR, Ashfaq R et al. Cooperative effect of cell-cycle regulators expression on bladder cancer development and biologic aggressiveness. Mod Pathol 2007; 20: 445-459
  • 56 Kruger S, Mahnken A, Kausch I et al. P16 immunoreactivity is an independent predictor of tumor progression in minimally invasive urothelial bladder carcinoma. Eur Urol 2005; 47: 463-467
  • 57 Margulis V, Shariat SF, Ashfaq R et al. Ki-67 is an independent predictor of bladder cancer outcome in patients treated with radical cystectomy for organ-confined disease. Clin Cancer Res 2006; 12: 7369-7373
  • 58 Margulis V, Lotan Y, Karakiewicz PI et al. Multi-institutional validation of the predictive value of Ki-67 labeling index in patients with urinary bladder cancer. J Natl Cancer Inst 2009; 101: 114-119
  • 59 Quintero A, Alvarez-Kindelan J, Luque RJ et al. Ki-67 MIB1 labelling index and the prognosis of primary TaT1 urothelial cell carcinoma of the bladder. J Clin Pathol 2006; 59: 83-88
  • 60 Sjodahl G, Lauss M, Lovgren K et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res 2012; 18: 3377-3386
  • 61 Sjodahl G, Lovgren K, Lauss M et al. Toward a molecular pathologic classification of urothelial carcinoma. Am J Pathol 2013; 183: 681-691
  • 62 Choi W, Porten S, Kim S et al. Identification of distinct Basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014; 25: 152-165
  • 63 Damrauer JS, Hoadley KA, Chism DD et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 2014; 111: 3110-3115
  • 64 van Rhijn BW, Behrendt MA, Hendricksen K et al. Toward Optimal Prediction of Prognosis in T1 Urothelial Carcinoma of the Bladder. Eur Urol 2015; DOI: 10.1016/j.eururo.2015.03.030.
  • 65 Bolenz C, Lotan Y. Translational research in bladder cancer: from molecular pathogenesis to useful tissue biomarkers. Cancer Biol Ther 2010; 10: 407-415
  • 66 Wolff AC, Hammond ME, Hicks DG et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 2013; 31: 3997-4013
  • 67 Noske A, Loibl S, Darb-Esfahani S et al. Comparison of different approaches for assessment of HER2 expression on protein and mRNA level: prediction of chemotherapy response in the neoadjuvant GeparTrio trial (NCT00544765). Breast Cancer Res Treat 2011; 126: 109-117
  • 68 Polley MY, Leung SC, McShane LM et al. An international Ki67 reproducibility study. J Natl Cancer Inst 2013; 105: 1897-1906
  • 69 Kim WT, Kim J, Yan C et al. S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy. Ann Oncol 2014; 25: 974-979
  • 70 Bellmunt J, Teh BT, Tortora G et al. Molecular targets on the horizon for kidney and urothelial cancer. Nat Rev Clin Oncol 2013; 10: 557-570
  • 71 Wong YN, Litwin S, Vaughn D et al. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J Clin Oncol 2012; 30: 3545-3551
  • 72 Bolenz C, Shariat SF, Karakiewicz PI et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU international 2010; 106: 1216-1222
  • 73 Lae M, Couturier J, Oudard S et al. Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in 1005 patients. Ann Oncol 2010; 21: 815-819
  • 74 Ross JS, Wang K, Gay LM et al. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carcinoma. Clin Cancer Res 2014; 20: 68-75
  • 75 Schneider SA, Sukov WR, Frank I et al. Outcome of patients with micropapillary urothelial carcinoma following radical cystectomy: ERBB2 (HER2) amplification identifies patients with poor outcome. Mod Pathol 2014; 27: 758-764
  • 76 Groenendijk FH, de Jong J, Fransen van de Putte EE et al. ERBB2 Mutations Characterize a Subgroup of Muscle-invasive Bladder Cancers with Excellent Response to Neoadjuvant Chemotherapy. Eur Urol 2015; DOI: 10.1016/j.eururo.2015.01.014.
  • 77 Hussain MH, MacVicar GR, Petrylak DP et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J Clin Oncol 2007; 25: 2218-2224
  • 78 Crew JP, O’Brien T, Bradburn M et al. Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res 1997; 57: 5281-5285
  • 79 Inoue K, Slaton JW, Karashima T et al. The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clin Cancer Res 2000; 6: 4866-4873
  • 80 Hahn NM, Stadler WM, Zon RT et al. Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04-75. J Clin Oncol 2011; 29: 1525-1530
  • 81 Dreicer R, Li H, Stein M et al. Phase 2 trial of sorafenib in patients with advanced urothelial cancer: a trial of the Eastern Cooperative Oncology Group. Cancer 2009; 115: 4090-4095
  • 82 Sridhar SS, Winquist E, Eisen A et al. A phase II trial of sorafenib in first-line metastatic urothelial cancer: a study of the PMH Phase II Consortium. Invest New Drugs 2011; 29: 1045-1049
  • 83 Grivas PD, Daignault S, Tagawa ST et al. Double-blind, randomized, phase 2 trial of maintenance sunitinib versus placebo after response to chemotherapy in patients with advanced urothelial carcinoma. Cancer 2014; 120: 692-701
  • 84 Necchi A, Mariani L, Zaffaroni N et al. Pazopanib in advanced and platinum-resistant urothelial cancer: an open-label, single group, phase 2 trial. Lancet Oncol 2012; 13: 810-816
  • 85 Milowsky MI, Iyer G, Regazzi AM et al. Phase II study of everolimus in metastatic urothelial cancer. BJU international 2013; 112: 462-470
  • 86 Powles T, Vogelzang N, Gregg D. Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). In 2014 ASCO Annual Meeting Abstracts. Chicago: Journal of Clinical Oncology; 2014
  • 87 Philips GK, Halabi S, Sanford BL et al. A phase II trial of cisplatin (C), gemcitabine (G) and gefitinib for advanced urothelial tract carcinoma: results of Cancer and Leukemia Group B (CALGB) 90102. Ann Oncol 2009; 20: 1074-1079
  • 88 Balar AV, Apolo AB, Ostrovnaya I et al. Phase II study of gemcitabine, carboplatin, and bevacizumab in patients with advanced unresectable or metastatic urothelial cancer. J Clin Oncol 2013; 31: 724-730
  • 89 Krege S, Rexer H, vom Dorp F et al. Prospective randomized double-blind multicentre phase II study comparing gemcitabine and cisplatin plus sorafenib chemotherapy with gemcitabine and cisplatin plus placebo in locally advanced and/or metastasized urothelial cancer: SUSE (AUO-AB 31/05). BJU international 2014; 113: 429-436