Eur J Pediatr Surg 2014; 24(06): 474-481
DOI: 10.1055/s-0034-1396423
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Advances in Oncologic Imaging

Alexander J. Towbin
1   Department of Radiology, Cincinnati Children's, Cincinnati, Ohio, United States
,
Andrew T. Trout
1   Department of Radiology, Cincinnati Children's, Cincinnati, Ohio, United States
,
Derek J. Roebuck
2   Department of Radiology, Great Ormond Street Hospital for Children, London, United Kingdom
› Author Affiliations
Further Information

Publication History

30 October 2014

04 November 2014

Publication Date:
05 December 2014 (online)

Abstract

Over the past two decades, there has been an increased reliance on radiologic imaging to diagnose and stage malignancies. This increased reliance on imaging has occurred because the quality of imaging has improved markedly. Currently, modalities such as MRI and CT allow the radiologist to obtain highly detailed images of the human body with a resolution of less than 1mm. More recently, researchers have shifted their focus from anatomic imaging to functional imaging. This burgeoning field of radiology strives to provide quantitative information regarding the behavior of tumors (or other pathology) to deliver patients and clinicians with prognostic information regarding the disease process. The purpose of this article is to describe the recent advances in pediatric oncologic imaging.

 
  • References

  • 1 Hawkins DS, Rajendran JG, Conrad III EU, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 2002; 94 (12) 3277-3284
  • 2 Costelloe CM, Macapinlac HA, Madewell JE , et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 2009; 50 (3) 340-347
  • 3 Denecke T, Hundsdörfer P, Misch D , et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging 2010; 37 (10) 1842-1853
  • 4 Ye Z, Zhu J, Tian M , et al. Response of osteogenic sarcoma to neoadjuvant therapy: evaluated by 18F-FDG-PET. Ann Nucl Med 2008; 22 (6) 475-480
  • 5 Bajpai J, Kumar R, Sreenivas V , et al. Prediction of chemotherapy response by PET-CT in osteosarcoma: correlation with histologic necrosis. J Pediatr Hematol Oncol 2011; 33 (7) e271-e278
  • 6 Hamada K, Tomita Y, Inoue A , et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med 2009; 23 (1) 89-95
  • 7 Hawkins DS, Conrad III EU, Butrynski JE, Schuetze SM, Eary JF. [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 2009; 115 (15) 3519-3525
  • 8 Gaston LL, Di Bella C, Slavin J, Hicks RJ, Choong PF. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol 2011; 40 (8) 1007-1015
  • 9 Cheon GJ, Kim MS, Lee JA , et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med 2009; 50 (9) 1435-1440
  • 10 Papathanasiou ND, Gaze MN, Sullivan K , et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 2011; 52 (4) 519-525
  • 11 Melzer HI, Coppenrath E, Schmid I , et al. I-MIBG scintigraphy/SPECT versus F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 2011; 38 (9) 1648-1658
  • 12 Begent J, Sebire NJ, Levitt G , et al. Pilot study of F(18)-fluorodeoxyglucose positron emission tomography/computerised tomography in Wilms' tumour: correlation with conventional imaging, pathology and immunohistochemistry. Eur J Cancer 2011; 47 (3) 389-396
  • 13 Piccardo A, Lopci E, Conte M , et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 2012; 39 (1) 57-71
  • 14 Mueller WP, Coppenrath E, Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol 2013; 43 (4) 418-427
  • 15 Khanna G, Bushnell D, O'Dorisio MS. Utility of radiolabeled somatostatin receptor analogues for staging/restaging and treatment of somatostatin receptor-positive pediatric tumors. Oncologist 2008; 13 (4) 382-389
  • 16 Gains JE, Bomanji JB, Fersht NL , et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 2011; 52 (7) 1041-1047
  • 17 Braghirolli AM, Waissmann W, da Silva JB, dos Santos GR. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 2014; 90: 138-148
  • 18 Olsen OE. Advances in pediatric oncology MRI. Acta Radiol 2013; 54 (9) 1030-1036
  • 19 Treves ST, Parisi MT, Gelfand MJ. Pediatric radiopharmaceutical doses: new guidelines. Radiology 2011; 261 (2) 347-349
  • 20 Schäfer JF, Gatidis S, Schmidt H , et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 2014; 273 (1) 220-231
  • 21 Torigian DA, Zaidi H, Kwee TC , et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013; 267 (1) 26-44
  • 22 Chung EM, Cube R, Lewis RB, Conran RM. From the archives of the AFIP: Pediatric liver masses: radiologic-pathologic correlation part 1. Benign tumors. Radiographics 2010; 30 (3) 801-826
  • 23 Chung EM, Lattin Jr GE, Cube R , et al. From the archives of the AFIP: Pediatric liver masses: radiologic-pathologic correlation. Part 2. Malignant tumors. Radiographics 2011; 31 (2) 483-507
  • 24 Meyers AB, Towbin AJ, Serai S, Geller JI, Podberesky DJ. Characterization of pediatric liver lesions with gadoxetate disodium. Pediatr Radiol 2011; 41 (9) 1183-1197
  • 25 Grieser C, Steffen IG, Seehofer D , et al. Histopathologically confirmed focal nodular hyperplasia of the liver: gadoxetic acid-enhanced MRI characteristics. Magn Reson Imaging 2013; 31 (5) 755-760
  • 26 Seale MK, Catalano OA, Saini S, Hahn PF, Sahani DV. Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 2009; 29 (6) 1725-1748
  • 27 Goshima S, Kanematsu M, Watanabe H , et al. Hepatic hemangioma and metastasis: differentiation with gadoxetate disodium-enhanced 3-T MRI. AJR Am J Roentgenol 2010; 195 (4) 941-946
  • 28 Bieze M, van den Esschert JW, Nio CY , et al. Diagnostic accuracy of MRI in differentiating hepatocellular adenoma from focal nodular hyperplasia: prospective study of the additional value of gadoxetate disodium. AJR Am J Roentgenol 2012; 199 (1) 26-34
  • 29 Grazioli L, Bondioni MP, Haradome H , et al. Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 2012; 262 (2) 520-529
  • 30 Jeong HT, Kim MJ, Park MS , et al. Detection of liver metastases using gadoxetic-enhanced dynamic and 10- and 20-minute delayed phase MR imaging. J Magn Reson Imaging 2012; 35 (3) 635-643
  • 31 Choi JY, Choi JS, Kim MJ , et al. Detection of hepatic hypovascular metastases: 3D gradient echo MRI using a hepatobiliary contrast agent. J Magn Reson Imaging 2010; 31 (3) 571-578
  • 32 Shimada K, Isoda H, Hirokawa Y, Arizono S, Shibata T, Togashi K. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases. Eur Radiol 2010; 20 (11) 2690-2698
  • 33 Kolbe AB, Podberesky DJ, Zhang B, Towbin AJ. The impact of hepatocyte phase imaging from infancy to young adulthood in patients with a known or suspected liver lesion. Pediatr Radiol 2014;
  • 34 Smith EA, Salisbury S, Martin R, Towbin AJ. Incidence and etiology of new liver lesions in pediatric patients previously treated for malignancy. AJR Am J Roentgenol 2012; 199 (1) 186-191
  • 35 Towbin AJ, Luo GG, Yin H, Mo JQ. Focal nodular hyperplasia in children, adolescents, and young adults. Pediatr Radiol 2011; 41 (3) 341-349
  • 36 Jacob J, Deganello A, Sellars ME, Hadzic N, Sidhu PS. Contrast enhanced ultrasound (CEUS) characterization of grey-scale sonographic indeterminate focal liver lesions in pediatric practice. Ultraschall Med 2013; 34 (6) 529-540
  • 37 McCarville MB, Kaste SC, Hoffer FA , et al. Contrast-enhanced sonography of malignant pediatric abdominal and pelvic solid tumors: preliminary safety and feasibility data. Pediatr Radiol 2012; 42 (7) 824-833
  • 38 Franchi-Abella S, Cahill AM, Barnacle AM, Pariente D, Roebuck DJ. Hepatobiliary intervention in children. Cardiovasc Intervent Radiol 2014; 37 (1) 37-54
  • 39 McCarville MB. New frontiers in pediatric oncologic imaging. Cancer Imaging 2008; 8: 87-92
  • 40 Byun BH, Kong CB, Lim I , et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med 2013; 54 (7) 1053-1059
  • 41 Gawande RS, Gonzalez G, Messing S, Khurana A, Daldrup-Link HE. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 2013; 43 (7) 836-845
  • 42 Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004; 22 (4) 275-282
  • 43 Ording Müller LS, Avenarius D, Olsen OE. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol 2011; 41 (2) 221-226
  • 44 Alibek S, Cavallaro A, Aplas A, Uder M, Staatz G. Diffusion weighted imaging of pediatric and adolescent malignancies with regard to detection and delineation: initial experience. Acad Radiol 2009; 16 (7) 866-871
  • 45 Fujii S, Kakite S, Nishihara K , et al. Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions. J Magn Reson Imaging 2008; 28 (5) 1149-1156
  • 46 Humphries PD, Sebire NJ, Siegel MJ, Olsen OE. Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 2007; 245 (3) 848-854
  • 47 Ichikawa T, Erturk SM, Motosugi U , et al. High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol 2006; 187 (1) 181-184
  • 48 Ichikawa T, Erturk SM, Motosugi U , et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 2007; 188 (2) 409-414
  • 49 Irie H, Kamochi N, Nojiri J, Egashira Y, Sasaguri K, Kudo S. High b-value diffusion-weighted MRI in differentiation between benign and malignant polypoid gallbladder lesions. Acta Radiol 2011; 52 (3) 236-240
  • 50 Kilickesmez O, Bayramoglu S, Inci E, Cimilli T. Value of apparent diffusion coefficient measurement for discrimination of focal benign and malignant hepatic masses. J Med Imaging Radiat Oncol 2009; 53 (1) 50-55
  • 51 Kilickesmez O, Inci E, Atilla S , et al. Diffusion-weighted imaging of the renal and adrenal lesions. J Comput Assist Tomogr 2009; 33 (6) 828-833
  • 52 Kocaoglu M, Bulakbasi N, Sanal HT , et al. Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 2010; 28 (5) 629-636
  • 53 Koh DM, Brown G, Riddell AM , et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol 2008; 18 (5) 903-910
  • 54 Nagayama M, Watanabe Y, Terai A , et al. Determination of the cutoff level of apparent diffusion coefficient values for detection of prostate cancer. Jpn J Radiol 2011; 29 (7) 488-494
  • 55 Razek AA, Farouk A, Mousa A, Nabil N. Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr 2011; 35 (3) 332-336
  • 56 Wang Y, Chen ZE, Nikolaidis P , et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn Reson Imaging 2011; 33 (1) 136-142
  • 57 Yang DM, Jahng GH, Kim HC , et al. The detection and discrimination of malignant and benign focal hepatic lesions: T2 weighted vs diffusion-weighted MRI. Br J Radiol 2011; 84 (1000) 319-326
  • 58 Klenk C, Gawande R, Uslu L , et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 2014; 15 (3) 275-285
  • 59 Villani A, Tabori U, Schiffman J , et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 2011; 12 (6) 559-567
  • 60 Cai W, Kassarjian A, Bredella MA , et al. Tumor burden in patients with neurofibromatosis types 1 and 2 and schwannomatosis: determination on whole-body MR images. Radiology 2009; 250 (3) 665-673