Planta Med 2015; 81(03): 228-234
DOI: 10.1055/s-0034-1396242
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Oleanane-Type Triterpenoids of Aceriphyllum rossii and Their Diacylglycerol Acyltransferase-Inhibitory Activity

Jee-Hee Seo*
1   Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, Korea
,
Mun-Ock Kim*
1   Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, Korea
,
Ah-Reum Han
1   Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, Korea
,
Eun-Bin Kwon
1   Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, Korea
,
Myung Ji Kang
1   Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, Korea
,
Sungchan Cho
2   Incurable Diseases Therapeutics Research Center, KRIBB, Cheongju, Korea
,
Dong-Oh Moon
3   Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk, Korea
,
Jung-Ran Noh
4   Laboratory Animal Center, KRIBB, Yuseong-gu, Daejeon, Korea
,
Chul-Ho Lee
4   Laboratory Animal Center, KRIBB, Yuseong-gu, Daejeon, Korea
,
Young-Soo Kim
5   Department of Pharmacology, Chungbuk National University, Cheongju, Korea
,
Hyun-Sun Lee
1   Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, Korea
› Author Affiliations
Further Information

Publication History

received 24 July 2014
revised 12 December 2014

accepted 19 December 2014

Publication Date:
11 February 2015 (online)

Abstract

Six known triterpenoid compounds, 3-oxoolean-12-en-27-oic acid (1), gypsogenic acid (2), 3α-hydroxyolean-12-en-27-oic acid (3), 3β-hydroxyolean-12-en-27-oic acid (4), aceriphyllic acid A (5), and oleanolic acid (6), were isolated from the roots of Aceriphyllum rossii. Their chemical structures were determined by comparison with available 1H-NMR and 13C-NMR data on known compounds. All the isolated compounds were evaluated for inhibitory activity against human diacylglycerol acyltransferases 1 and 2. Most of the isolates exhibited a better inhibitory activity against diacylglycerol acyltransferase 2 (IC50: 11.6–44.2 µM) than against diacylglycerol acyltransferase 1 (IC50: 22.7–119.5 µM). In particular, compounds 1 and 5 showed strong inhibition efficacy towards diacylglycerol acyltransferases 1 and 2, and appeared to act competitively against oleoyl-CoA in vitro. The results also indicated that both compounds reduced newly synthesized triacylglycerol in HuTu80 and HepG2 cells. Oral administration of compound 1 significantly reduced postprandial triacylglycerol in mice following an oral lipid challenge. In conclusion, the current study indicates that compound 1 suppresses both de novo triacylglycerol biosynthesis and resynthesis through the inhibition of diacylglycerol acyltransferase activity, and therefore may be a useful agent for treating diseases associated with a high triacylglycerol level.

* These authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23: 201-229
  • 2 Farese jr. RV, Cases S, Smith SJ. Triglyceride synthesis: insights from the cloning of diacylglycerol acyltransferase. Curr Opin Lipidol 2000; 11: 229-234
  • 3 Coleman R, Bell RM. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem 1976; 251: 4537-4543
  • 4 Haagsman HP, Van Golde LM. Synthesis and secretion of very low density lipoproteins by isolated rat hepatocytes in suspension: role of diacylglycerol acyltransferase. Arch Biochem Biophys 1981; 208: 395-402
  • 5 Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. Characterization of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related enzymes. J Biol Chem 1998; 273: 26765-26771
  • 6 Yen CL, Stone SJ, Koliwad S, Harris C, Farese jr. RV. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 2008; 49: 2283-2301
  • 7 Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, Farese jr. RV. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 2000; 25: 87-90
  • 8 Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, McGuire JG, Pitas RE, Eckel RH, Farese jr. RV. Increased insulin and leptin sensitivity in mice lacking acyl CoA : diacylglycerol acyltransferase 1. J Clin Invest 2002; 109: 1049-1055
  • 9 Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 2007; 282: 22678-22688
  • 10 Yu XX, Murray SF, Pandey SK, Booten SL, Bao D, Song XZ, Kelly S, Chen S, McKay R, Monia BP, Bhanot S. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 2005; 42: 362-371
  • 11 Monetti M, Levin MC, Watt MJ, Sajan MP, Marmor S, Hubbard BK, Stevens RD, Bain JR, Newgard CB, Farese sen. RV, Hevener AL, Farese jr. RV. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007; 6: 69-78
  • 12 Wei S, Tang YB, Hua H, Ohkoshi E, Goto M, Wang LT, Lee KH, Xiao Z. Discovery of novel andrographolide derivatives as cytotoxic agents. Bioorg Med Chem Lett 2013; 23: 4056-4060
  • 13 Han JT, Kim HY, Park YD, Lee YH, Lee KR, Kwon BM, Baek NI. Aceriphyllic acid A, A new ACAT inhibitory triterpenoid, from Aceriphyllum rossii . Planta Med 2002; 68: 558-561
  • 14 Min BS, Lee I, Chang MJ, Yoo JK, Na M, Hung TM, Thuong PT, Lee J, Kim JH, Kim JC, Woo MH, Choi JS, Lee HK, Bae K. Anticomplementary activity of triterpenoids from the whole plant of Aceriphyllum rossii against the classical pathway. Planta Med 2008; 74: 726-729
  • 15 Han JT, Bang MH, Chun OK, Kim DO, Lee CY, Baek NI. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch Pharm Res 2004; 27: 390-395
  • 16 Zheng CJ, Sohn MJ, Kim KY, Yu HE, Kim WG. Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii . J Agric Food Chem 2008; 56: 11752-11756
  • 17 Park SY, Yook CS, Nohara T. New oleanene glycosides from the leaves of Acanthopanax japonicus . Chem Pharm Bull (Tokyo) 2005; 53: 1147-1151
  • 18 Cao J, Zhou Y, Peng H, Huang X, Stahler S, Suri V, Qadri A, Gareski T, Jones J, Hahm S, Perreault M, McKew J, Shi M, Xu X, Tobin JF, Gimeno RE. Targeting Acyl-CoA : diacylglycerol acyltransferase 1 (DGAT1) with small molecule inhibitors for the treatment of metabolic diseases. J Biol Chem 2011; 286: 41838-41851
  • 19 Lee K, Kim M, Lee B, Goo J, Kim J, Naik R, Seo JH, Kim MO, Byun Y, Song GY, Lee HS, Choi Y. Discovery of indolyl acrylamide derivatives as human diacylglycerol acyltransferase-2 selective inhibitors. Org Biomol Chem 2013; 11: 849-858
  • 20 Qi J, Lang W, Geisler JG, Wang P, Petrounia I, Mai S, Smith C, Askari H, Struble GT, Williams R, Bhanot S, Monia BP, Bayoumy S, Grant E, Caldwell GW, Todd MJ, Liang Y, Gaul MD, Demarest KT, Connelly MA. The use of stable isotope-labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and -2. J Lipid Res 2012; 53: 1106-1116
  • 21 Wurie HR, Buckett L, Zammit VA. Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J 2012; 279: 3033-3047
  • 22 Mansbach 2nd CM, Gorelick F. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol 2007; 293: G645-G650
  • 23 Buhman KK, Chen HC, Farese jr. RV. The enzymes of neutral lipid synthesis. J Biol Chem 2001; 276: 40369-40372
  • 24 Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese jr. RV. Identification of a gene encoding an acyl CoA : diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 1998; 95: 13018-13023
  • 25 Buhman KK, Smith SJ, Stone SJ, Repa JJ, Wong JS, Knapp jr. FF, Burri BJ, Hamilton RL, Abumrad NA, Farese jr. RV. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J Biol Chem 2002; 277: 25474-25479
  • 26 Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese jr. RV. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 2001; 276: 38870-38876
  • 27 Haas JT, Winter HS, Lim E, Kirby A, Blumenstiel B, DeFelice M, Gabriel S, Jalas C, Branski D, Grueter CA, Toporovski MS, Walther TC, Daly MJ, Farese jr. RV. DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest 2012; 122: 4680-4684
  • 28 Dow RL, Andrews M, Aspnes GE, Balan G, Michael Gibbs E, Guzman-Perez A, Karki K, Laperle JL, Li JC, Litchfield J, Munchhof MJ, Perreault C, Patel L. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2, 3-d]pyrimidine core. Bioorg Med Chem Lett 2011; 21: 6122-6125
  • 29 Cheng D, Iqbal J, Devenny J, Chu CH, Chen L, Dong J, Seethala R, Keim WJ, Azzara AV, Lawrence RM, Pelleymounter MA, Hussain MM. Acylation of acylglycerols by acyl coenzyme A: diacylglycerol acyltransferase 1 (DGAT1). Functional importance of DGAT1 in the intestinal fat absorption. J Biol Chem 2008; 283: 29802-29811
  • 30 Jadhav RD, Kadam KS, Kandre S, Guha T, Reddy MM, Brahma MK, Deshmukh NJ, Dixit A, Doshi L, Potdar N, Enose AA, Vishwakarma RA, Sivaramakrishnan H, Srinivasan S, Nemmani KV, Gupte A, Gangopadhyay AK, Sharma R. Synthesis and biological evaluation of isoxazole, oxazole, and oxadiazole containing heteroaryl analogs of biaryl ureas as DGAT1 inhibitors. Eur J Med Chem 2012; 54: 324-342
  • 31 Yeh VS, Beno DW, Brodjian S, Brune ME, Cullen SC, Dayton BD, Dhaon MK, Falls HD, Gao J, Grihalde N, Hajduk P, Hansen TM, Judd AS, King AJ, Klix RC, Larson KJ, Lau YY, Marsh KC, Mittelstadt SW, Plata D, Rozema MJ, Segreti JA, Stoner EJ, Voorbach MJ, Wang X, Xin X, Zhao G, Collins CA, Cox BF, Reilly RM, Kym PR, Souers AJ. Identification and preliminary characterization of a potent, safe, and orally efficacious inhibitor of acyl-CoA : diacylglycerol acyltransferase 1. J Med Chem 2012; 55: 1751-1757
  • 32 Uchida A, Whitsitt MC, Eustaquio T, Slipchenko MN, Leary JF, Cheng JX, Buhman KK. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front Physiol 2012; 3: 26
  • 33 Douglass JD, Malik N, Chon SH, Wells K, Zhou YX, Choi AS, Joseph LB, Storch J. Intestinal mucosal triacylglycerol accumulation secondary to decreased lipid secretion in obese and high fat fed mice. Front Physiol 2012; 3: 25
  • 34 Wakimoto K, Chiba H, Michibata H, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H, Imai Y. A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice. Biochem Biophys Res Commun 2003; 310: 296-302
  • 35 Ko JS, Ryu SY, Kim YS, Chung MY, Kang JS, Rho MC, Lee HS, Kim YK. Inhibitory activity of diacylglycerol acyltransferase by tanshinones from the root of Salvia miltiorrhiza . Arch Pharm Res 2002; 25: 446-448
  • 36 Chung MY, Rho MC, Ko JS, Ryu SY, Jeune KH, Kim K, Lee HS, Kim YK. In vitro inhibition of diacylglycerol acyltransferase by prenylflavonoids from Sophora flavescens . Planta Med 2004; 70: 258-260
  • 37 Oh WK, Lee C, Seo JH, Chung MY, Cui L, Fomum ZT, Kang JS, Lee HS. Diacylglycerol acyltransferase-inhibitory compounds from Erythrina senegalensis . Arch Pharm Res 2009; 32: 43-47
  • 38 Ko JS, Rho MC, Chung MY, Song HY, Kang JS, Kim K, Lee HS, Kim YK. Quinolone alkaloids, diacylglycerol acyltransferase inhibitors from the fruits of Evodia rutaecarpa . Planta Med 2002; 68: 1131-1133
  • 39 Lee SW, Kim K, Rho MC, Chung MY, Kim YH, Lee S, Lee HS, Kim YK. New polyacetylenes, DGAT inhibitors from the roots of Panax ginseng . Planta Med 2004; 70: 197-200
  • 40 Lee SW, Rho MC, Park HR, Choi JH, Kang JY, Lee JW, Kim K, Lee HS, Kim YK. Inhibition of diacylglycerol acyltransferase by alkamides isolated from the fruits of Piper longum and Piper nigrum . J Agric Food Chem 2006; 54: 9759-9763
  • 41 Park HR, Yoo MY, Seo JH, Kim IS, Kim NY, Kang JY, Cui L, Lee CS, Lee CH, Lee HS. Sesquiterpenoids isolated from the flower buds of Tussilago farfara L. inhibit diacylglycerol acyltransferase. J Agric Food Chem 2008; 56: 10493-10497
  • 42 Wang GS, Shao CJ, Xu JD. [Studies on the chemical constituents of the roots of Aralia continentalis Kitag]. Zhongguo Zhong Yao Za Zhi 1989; 14: 422-424 447 [in Chinese]
  • 43 Oshima Y, Ohsawa T, Hikino H. Structures of dianosides G, H and I, triterpenoid saponins of Dianthus superbus var. longicalycinus Herbs 1. Planta Med 1984; 50: 254-258
  • 44 Coleman RA. Diacylglycerol acyltransferase and monoacylglycerol acyltransferase from liver and intestine. Methods Enzymol 1992; 209: 98-104
  • 45 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 46 Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 2006; 47: 1281-1288
  • 47 Schober G, Arnold M, Birtles S, Buckett LK, Pacheco-Lopez G, Turnbull AV, Langhans W, Mansouri A. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. J Lipid Res 2013; 54: 1369-1384