Neuroradiologie Scan 2015; 05(04): 329-362
DOI: 10.1055/s-0034-1393163
Fortbildung
Neurologische Kopf-Hals-Bildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Infektionen des zentralen Nervensystems durch Bakterien, Pilze und Parasiten: radiologisch-pathologische Korrelation und historischer Rückblick[1]

Bacterial, fungal, and parasitic infections of the central nervous system: radiologic-pathologic correlation and historical perspectives
Robert Y. Shih
,
Kelly K. Koeller
Further Information

Publication History

erhalten 16 November 2014

akzeptiert 29 January 2015

Publication Date:
22 September 2015 (online)

Zusammenfassung

Trotz beachtlicher Fortschritte in Prävention und Behandlung bleiben Infektionskrankheiten mit Beteiligung des zentralen Nervensystems eine wichtige Morbiditäts- und Mortalitätsursache, insbesondere in weniger entwickelten Ländern und bei immunkompromittierten Personen. Bakterielle, Pilz- und parasitäre Pathogene sind lebende Organismen und greifen Gehirn, Rückenmark oder Hirnhäute an. Infektionen durch diese Pathogene sind mit vielfältigen Mustern in der Neurobildgebung assoziiert, die sich in den meisten Fällen am besten in der Magnetresonanztomografie darstellen lassen. Bakterielle Infektionen – am häufigsten auf Streptokokken-, Haemophilus- und Neisseria-Spezies zurückzuführen – verursachen eine signifikante Meningitis, während die weniger häufige Zerebritis und die anschließende Abszessbildung eine gut dokumentierte Progression aufweisen, mit zunehmend hervortretender Veränderung der Signalintensität und entsprechender Kontrastmittelanreicherung. Atypische bakterielle Infektionen sind durch die Entwicklung einer granulomatösen Reaktion charakterisiert, die klassischerweise bei der Tuberkulose beobachtet wird; dabei ist das Tuberkulom die häufigste parenchymale Form der Erkrankung. Durch Spirochäten und Rickettsien verursachte Erkrankungen sind weniger häufig. Pilzinfektionen herrschen bei immunkompromittierten Wirten vor und werden durch Hefepilze, Schimmelpilze und dimorphe Pilze verursacht. Die Kryptokokkenmeningitis ist die häufigste Pilzinfektion, während die Candidiasis die häufigste nosokomiale Infektion ist. Mukormykose und Aspergillose sind angioinvasiv und gehen mit einer hohen Morbidität und Mortalität bei immunkompromittierten Patienten einher. Hinsichtlich einer potenziellen weltweiten Exposition sind parasitäre Infektionen, darunter Neurozystizerkose, Toxoplasmose, Echinokokkose, Malaria und Schistosomiasis, die größte Bedrohung. Seltene Amöbeninfektionen sind wegen ihrer extremen Virulenz und hohen Mortalität erwähnenswert. Das Ziel dieses Artikels ist es, die in der Neurobildgebung charakteristischen Manifestationen von Infektionen durch Bakterien, Pilze und Parasiten hervorzuheben; dabei liegt der Schwerpunkt auf der radiologisch-pathologischen Korrelation und dem historischen Rückblick.

Abstract

Despite remarkable progress in prevention and treatment, infectious diseases affecting the central nervous system remain an important source of morbidity and mortality, particularly in less-developed countries and in immunocompromised persons. Bacterial, fungal, and parasitic pathogens are derived from living organisms and affect the brain, spinal cord, or meninges. Infections due to these pathogens are associated with a variety of neuroimaging patterns that can be appreciated at magnetic resonance imaging in most cases. Bacterial infections, most often due to Streptococcus, Haemophilus, and Neisseria species, cause significant meningitis, whereas the less common cerebritis and subsequent abscess formation have well-documented progression, with increasingly prominent altered signal intensity and corresponding contrast enhancement. Atypical bacterial infections are characterized by the development of a granulomatous response, classically seen in tuberculosis, in which the tuberculoma is the most common parenchymal form of the disease; spirochetal and rickettsial diseases are less common. Fungal infections predominate in immunocompromised hosts and are caused by yeasts, molds, and dimorphic fungi. Cryptococcal meningitis is the most common fungal infection, whereas candidiasis is the most common nosocomial infection. Mucormycosis and aspergillosis are characterized by angioinvasiveness and are associated with high morbidity and mortality among immunocompromised patients. In terms of potential exposure in the worldwide population, parasitic infections, including neurocysticercosis, toxoplasmosis, echinococcosis, malaria, and schistosomiasis, are the greatest threat. Rare amebic infections are noteworthy for their extreme virulence and high mortality. The objective of this article is to highlight the characteristic neuroimaging manifestations of bacterial, fungal, and parasitic diseases, with emphasis on radiologic-pathologic correlation and historical perspectives.

1 © 2015 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2015; 35: 1141 – 1169. Online published in 10.1148/rg.2015140317. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Omran AR. The epidemiologic transition: a theory of the epidemiology of population change 1971. Milbank Q 2005; 83: 731-757
  • 2 Armstrong GL, Conn LA, Pinner RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA 1999; 281: 61-66
  • 3 Chin JH, Vora N. The global burden of neurologic diseases. Neurology 2014; 83: 349-351
  • 4 Murray CJ, Ortblad KF, Guinovart C et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 1005-1070
  • 5 Karamanou M, Panayiotakopoulos G, Tsoucalas G et al. From miasmas to germs: a historical approach to theories of infectious disease transmission. Infez Med 2012; 20: 58-62
  • 6 Scamardella JM. Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista. Int Microbiol 1999; 2: 207-216
  • 7 Whittaker RH. New concepts of kingdoms or organisms: Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 1969; 163 (3863) 150-160
  • 8 Tyler KL. Chapter 28: a history of bacterial meningitis. Handb Clin Neurol 2010; 95: 417-433
  • 9 Mathisen GE, Johnson JP. Brain abscess. Clin Infect Dis 1997; 25: 763-779 quiz 780-781
  • 10 Thigpen MC, Whitney CG, Messonnier NE et al. Bacterial meningitis in the United States, 1998–2007. N Engl J Med 2011; 364: 2016-2025
  • 11 van de Beek D, de Gans J, Spanjaard L et al. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 2004; 351: 1849-1859
  • 12 Bartt R. Acute bacterial and viral meningitis. Continuum (Minneap Minn) 2012; 18: 1255-1270
  • 13 van de Beek D, de Gans J, Tunkel AR et al. Community-acquired bacterial meningitis in adults. N Engl J Med 2006; 354: 44-53
  • 14 Hasbun R, Abrahams J, Jekel J et al. Computed tomography of the head before lumbar puncture in adults with suspected meningitis. N Engl J Med 2001; 345: 1727-1733
  • 15 Nigrovic LE, Malley R, Macias CG et al. Effect of antibiotic pretreatment on cerebrospinal fluid profiles of children with bacterial meningitis. Pediatrics 2008; 122: 726-730
  • 16 Mohan S, Jain KK, Arabi M et al. Imaging of meningitis and ventriculitis. Neuroimaging Clin N Am 2012; 22: 557-583
  • 17 Smirniotopoulos JG, Murphy FM, Rushing EJ et al. Patterns of contrast enhancement in the brain and meninges. RadioGraphics 2007; 27: 525-551
  • 18 Kremer S, Abu Eid M, Bierry G et al. Accuracy of delayed post-contrast FLAIR MR imaging for the diagnosis of leptomeningeal infectious or tumoral diseases. J Neuroradiol 2006; 33: 285-291
  • 19 Canale DJ. William Macewen and the treatment of brain abscesses: revisited after one hundred years. J Neurosurg 1996; 84: 133-142
  • 20 Black P, Graybill JR, Charache P. Penetration of brain abscess by systemically administered antibiotics. J Neurosurg 1973; 38: 705-709
  • 21 Enzmann DR, Britt RH, Yeager AS. Experimental brain abscess evolution: computed tomographic and neuropathologic correlation. Radiology 1979; 133: 113-122
  • 22 Enzmann DR, Britt RH, Placone R. Staging of human brain abscess by computed tomography. Radiology 1983; 146: 703-708
  • 23 Haimes AB, Zimmerman RD, Morgello S et al. MR imaging of brain abscesses. AJR Am J Roentgenol 1989; 152: 1073-1085
  • 24 Lai PH, Chang HC, Chuang TC et al. Susceptibility-weighted imaging in patients with pyogenic brain abscesses at 1.5T: characteristics of the abscess capsule. AJNR Am J Neuroradiol 2012; 33: 910-914
  • 25 Kobayashi SD, DeLeo FR. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 2009; 1: 309-333
  • 26 Mishra AM, Gupta RK, Saksena S et al. Biological correlates of diffusivity in brain abscess. Magn Reson Med 2005; 54: 878-885
  • 27 Ebisu T, Tanaka C, Umeda M et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging 1996; 14: 1113-1116
  • 28 Hartmann M, Jansen O, Heiland S et al. Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 2001; 22: 1738-1742
  • 29 Cartes-Zumelzu FW, Stavrou I, Castillo M et al. Diffusion-weighted imaging in the assessment of brain abscesses therapy. AJNR Am J Neuroradiol 2004; 25: 1310-1317
  • 30 Rath TJ, Hughes M, Arabi M et al. Imaging of cerebritis, encephalitis, and brain abscess. Neuroimaging Clin N Am 2012; 22: 585-607
  • 31 Pal D, Bhattacharyya A, Husain M et al. In vivo proton MR spectroscopy evaluation of pyogenic brain abscesses: a report of 194 cases. AJNR Am J Neuroradiol 2010; 31: 360-366
  • 32 Fukui MB, Williams RL, Mudigonda S. CT and MR imaging features of pyogenic ventriculitis. AJNR Am J Neuroradiol 2001; 22: 1510-1516
  • 33 Ferreira NP, Otta GM, do Amaral LL et al. Imaging aspects of pyogenic infections of the central nervous system. Top Magn Reson Imaging 2005; 16: 145-154
  • 34 Weingarten K, Zimmerman RD, Becker RD et al. Subdural and epidural empyemas: MR imaging. AJR Am J Roentgenol 1989; 152: 615-621
  • 35 Sze G, Zimmerman RD. The magnetic resonance imaging of infections and inflammatory diseases. Radiol Clin North Am 1988; 26: 839-859
  • 36 Moseley IF, Kendall BE. Radiology of intracranial empyemas, with special reference to computed tomography. Neuroradiology 1984; 26: 333-345
  • 37 Tsuchiya K, Osawa A, Katase S et al. Diffusion-weighted MRI of subdural and epidural empyemas. Neuroradiology 2003; 45: 220-223
  • 38 Niederweis M, Danilchanka O, Huff J et al. Mycobacterial outer membranes: in search of proteins. Trends Microbiol 2010; 18: 109-116
  • 39 Lawn SD, Zumla AI. Tuberculosis. Lancet 2011; 378: 57-72
  • 40 Donald PR, Schaaf HS, Schoeman JF. Tuberculous meningitis and miliary tuberculosis: the Rich focus revisited. J Infect 2005; 50: 193-195
  • 41 Woodruff HB, Selman A. Waksman, winner of the 1952 Nobel Prize for physiology or medicine. Appl Environ Microbiol 2014; 80: 2-8
  • 42 Theron S, Andronikou S, Grobbelaar M et al. Localized basal meningeal enhancement in tuberculous meningitis. Pediatr Radiol 2006; 36: 1182-1185
  • 43 van Well GT, Paes BF, Terwee CB et al. Twenty years of pediatric tuberculous meningitis: a retrospective cohort study in the western cape of South Africa. Pediatrics 2009; 123: e1-e8
  • 44 Patkar D, Narang J, Yanamandala R et al. Central nervous system tuberculosis: pathophysiology and imaging findings. Neuroimaging Clin N Am 2012; 22: 677-705
  • 45 Bargalló J, Berenguer J, García-Barrionuevo J et al. The “target sign”: Is it a specific sign of CNS tuberculoma?. Neuroradiology 1996; 38: 547-550
  • 46 Gupta RK, Kathuria MK, Pradhan S. Magnetization transfer MR imaging in CNS tuberculosis. AJNR Am J Neuroradiol 1999; 20: 867-875
  • 47 Gupta RK, Vatsal DK, Husain N et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR Am J Neuroradiol 2001; 22: 1503-1509
  • 48 Harper KN, Zuckerman MK, Harper ML et al. The origin and antiquity of syphilis revisited: an appraisal of Old World pre-Columbian evidence for treponemal infection. Am J Phys Anthropol 2011; 146 (Suppl. 53) 99-133
  • 49 Pavia CS. Overview of the pathogenic spirochetes. J Spirochetal Tick-borne Dis 1994; 1: 3-11
  • 50 Rupprecht TA, Koedel U, Fingerle V et al. The pathogenesis of Lyme neuroborreliosis: from infection to inflammation. Mol Med 2008; 14: 205-212
  • 51 Hildenbrand P, Craven DE, Jones R et al. Lyme neuroborreliosis: manifestations of a rapidly emerging zoonosis. AJNR Am J Neuroradiol 2009; 30: 1079-1087
  • 52 Johns DR, Tierney M, Felsenstein D. Alteration in the natural history of neurosyphilis by concurrent infection with the human immunodeficiency virus. N Engl J Med 1987; 316: 1569-1572
  • 53 Brightbill TC, Ihmeidan IH, Post MJ et al. Neurosyphilis in HIV-positive and HIV-negative patients: neuroimaging findings. AJNR Am J Neuroradiol 1995; 16: 703-711
  • 54 Marques A. Chronic Lyme disease: a review. Infect Dis Clin North Am 2008; 22: 341-360 (vii – viii)
  • 55 Walker DH. Rocky Mountain spotted fever: a disease in need of microbiological concern. Clin Microbiol Rev 1989; 2: 227-240
  • 56 Centers for Disease Control and Prevention. Rocky Mountain Spotted Fever (RMSF). Im Internet: http://www.cdc.gov/rmsf/ Updated November 21, 2013 (Stand: 2. 9. 2015)
  • 57 Bonawitz C, Castillo M, Mukherji SK. Comparison of CT and MR features with clinical outcome in patients with Rocky Mountain spotted fever. AJNR Am J Neuroradiol 1997; 18: 459-464
  • 58 Mathur M, Johnson CE, Sze G. Fungal infections of the central nervous system. Neuroimaging Clin N Am 2012; 22: 609-632
  • 59 Barnett JA. Beginnings of microbiology and biochemistry: the contribution of yeast research. Microbiology 2003; 149: 557-567
  • 60 Suchitha S, Sheeladevi CS, Sunila R et al. Disseminated cryptococcosis in an immunocompetent patient: a case report. Case Rep Pathol 2012; 2012: 652351
  • 61 Igel HJ, Bolande RP. Humoral defense mechanisms in cryptococcosis: substances in normal human serum, saliva, and cerebrospinal fluid affecting the growth of Cryptococcus neoformans. J Infect Dis 1966; 116: 75-83
  • 62 Kovoor JM, Mahadevan A, Narayan JP et al. Cryptococcal choroid plexitis as a mass lesion: MR imaging and histopathologic correlation. AJNR Am J Neuroradiol 2002; 23: 273-276
  • 63 Saigal G, Post MJ, Lolayekar S et al. Unusual presentation of central nervous system cryptococcal infection in an immunocompetent patient. AJNR Am J Neuroradiol 2005; 26: 2522-2526
  • 64 Tyc KM, Kühn C, Wilson D et al. Assessing the advantage of morphological changes in Candida albicans: a game theoretical study. Front Microbiol 2014; 5: 41
  • 65 Lai PH, Lin SM, Pan HB et al. Disseminated miliary cerebral candidiasis. AJNR Am J Neuroradiol 1997; 18: 1303-1306
  • 66 Ligon BL. Penicillin: its discovery and early development. Semin Pediatr Infect Dis 2004; 15: 52-57
  • 67 McLean FM, Ginsberg LE, Stanton CA. Perineural spread of rhinocerebral mucormycosis. AJNR Am J Neuroradiol 1996; 17: 114-116
  • 68 Ashdown BC, Tien RD, Felsberg GJ. Aspergillosis of the brain and paranasal sinuses in immunocompromised patients: CT and MR imaging findings. AJR Am J Roentgenol 1994; 162: 155-159
  • 69 Luthra G, Parihar A, Nath K et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol 2007; 28: 1332-1338
  • 70 Hurst RW, Judkins A, Bolger W et al. Mycotic aneurysm and cerebral infarction resulting from fungal sinusitis: imaging and pathologic correlation. AJNR Am J Neuroradiol 2001; 22: 858-863
  • 71 Almutairi BM, Nguyen TB, Jansen GH et al. Invasive aspergillosis of the brain: radiologic-pathologic correlation. RadioGraphics 2009; 29: 375-379
  • 72 Hughes AD, Lorusso GD, Greer DL. Cost-effective method for identification of dimorphic fungi. J Clin Microbiol 2004; 42: 4408-4409
  • 73 Galgiani JN, Ampel NM, Blair JE et al. Coccidioidomycosis. Clin Infect Dis 2005; 41: 1217-1223
  • 74 Hirschmann JV. The early history of coccidioidomycosis: 1892–1945. Clin Infect Dis 2007; 44: 1202-1207
  • 75 Erly WK, Bellon RJ, Seeger JF et al. MR imaging of acute coccidioidal meningitis. AJNR Am J Neuroradiol 1999; 20: 509-514
  • 76 Erly WK, Labadie E, Williams PL et al. Disseminated coccidioidomycosis complicated by vasculitis: a cause of fatal subarachnoid hemorrhage in two cases. AJNR Am J Neuroradiol 1999; 20: 1605-1608
  • 77 Zalduondo FM, Provenzale JM, Hulette C et al. Meningitis, vasculitis, and cerebritis caused by CNS histoplasmosis: radiologic-pathologic correlation. AJR Am J Roentgenol 1996; 166: 194-196
  • 78 Kimura-Hayama ET, Higuera JA, Corona-Cedillo R et al. Neurocysticercosis: radiologic-pathologic correlation. RadioGraphics 2010; 30: 1705-1719
  • 79 Sotelo J, Guerrero V, Rubio F. Neurocysticercosis: a new classification based on active and inactive forms: a study of 753 cases. Arch Intern Med 1985; 145: 442-445
  • 80 Del Brutto OH, Santibañez R, Noboa CA et al. Epilepsy due to neurocysticercosis: analysis of 203 patients. Neurology 1992; 42: 389-392
  • 81 Coyle CM, Tanowitz HB. Diagnosis and treatment of neurocysticercosis: interdisciplinary perspectives on infectious diseases. Interdiscip Perspect Infect Dis 2009; 2009: 180742
  • 82 Garcia HH, Gonzalez AE, Tsang VC et al. Neurocysticercosis: some of the essentials. Pract Neurol 2006; 6: 288-297
  • 83 Rodriguez S, Dorny P, Tsang VC et al. Detection of Taenia solium antigens and anti-T. solium antibodies in paired serum and cerebrospinal fluid samples from patients with intraparenchymal or extraparenchymal neurocysticercosis. J Infect Dis 2009; 199: 1345-1352
  • 84 Noujaim SE, Rossi MD, Rao SK et al. CT and MR imaging of neurocysticercosis. AJR Am J Roentgenol 1999; 173: 1485-1490
  • 85 Ramsey RG, Gean AD. Neuroimaging of AIDS. I. Central nervous system toxoplasmosis. Neuroimaging Clin N Am 1997; 7: 171-186
  • 86 Centers for Disease Control and Prevention. Parasites – Toxoplasmosis (Toxoplasma infection). Im Internet: http://www.cdc.gov/parasites/toxoplasmosis/ Updated January 10, 2013 (Stand: 2. 9. 2015)
  • 87 Koeller KK, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologic correlation. RadioGraphics 1997; 17: 1497-1526
  • 88 World Health Organization. Echinococcosis. Im Internet: (Stand: 02.09.2015) http://www.who.int/echinococcosis/en/ Updated 2014
  • 89 Centers for Disease Control and Prevention. Parasites: echinococcosis. Im Internet: http://www.cdc.gov/parasites/echinococcosis/ Updated December 12, 2012 (Stand: 2. 9. 2015)
  • 90 Coates R, von Sinner W, Rahm B. MR imaging of an intracerebral hydatid cyst. AJNR Am J Neuroradiol 1990; 11: 1249-1250
  • 91 Senturk S, Oguz KK, Soylemezoglu F et al. Cerebral alveolar echinoccosis mimicking primary brain tumor. AJNR Am J Neuroradiol 2006; 27: 420-422
  • 92 Rumboldt Z, Jednacak H, Talan-HraniloviĆ J et al. Unusual appearance of a cisternal hydatid cyst. AJNR Am J Neuroradiol 2003; 24: 112-114
  • 93 Kohli A, Gupta RK, Poptani H et al. In vivo proton magnetic resonance spectroscopy in a case of intracranial hydatid cyst. Neurology 1995; 45: 562-564
  • 94 Ba’assiri A, Haddad FS. Primary extradural intracranial hydatid disease: CT appearance. AJNR Am J Neuroradiol 1984; 5: 474-475
  • 95 Mascalchi M, Ragazzoni A, Dal Pozzo G. Pontine hydatid cyst in association with an acoustic neurinoma: MR appearance in an unusual case. AJNR Am J Neuroradiol 1991; 12: 78-79
  • 96 Jena A, Tripathi RP, Jain AK. Primary spinal echinococcosis causing paraplegia: case report with MR and pathologic correlation. AJNR Am J Neuroradiol 1991; 12: 560
  • 97 Novak M, Hameed N, Buist R et al. Metabolites of alveolar Echinococcus as determined by [31P]- and [1H]-nuclear magnetic resonance spectroscopy. Parasitol Res 1992; 78: 665-670
  • 98 Martinez AJ, Visvesvara GS. Free-living, amphizoic and opportunistic amebas. Brain Pathol 1997; 7: 583-598
  • 99 Alkhunaizi AM, Dawamneh MF, Banda RW et al. Acanthamoeba encephalitis in a patient with systemic lupus treated with rituximab. Diagn Microbiol Infect Dis 2013; 75: 192-194
  • 100 Ranjan R, Handa A, Choudhary A et al. Acantha­moeba infection in an interhemispheric ependymal cyst: a case report. Surg Neurol 2009; 72: 185-189
  • 101 Lackner P, Beer R, Broessner G et al. Acute granulomatous acanthamoeba encephalitis in an immunocompetent patient. Neurocrit Care 2010; 12: 91-94
  • 102 Booton GC, Visvesvara GS, Byers TJ et al. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol 2005; 43: 1689-1693
  • 103 Visvesvara GS, Stehr-Green JK. Epidemiology of free-living ameba infections. J Protozool 1990; 37: 25S-33S
  • 104 Cha JH, Furie K, Kay J et al. Case records of the Massachusetts General Hospital. A 24-year-old woman with systemic lupus erythematosus, seizures, and right arm weakness, case 39-2006. N Engl J Med 2006 355: 2678-2689
  • 105 Visvesvara GS, Martinez AJ, Schuster FL et al. Leptomyxid ameba, a new agent of amebic meningoencephalitis in humans and animals. J Clin Microbiol 1990; 28: 2750-2756
  • 106 Centers for Disease Control and Prevention (CDC). Balamuthia amebic encephalitis – California, 1999–2007. MMWR Morb Mortal Wkly Rep 2008; 57: 768-771
  • 107 Centers for Disease Control and Prevention (CDC). Notes from the field: transplant-transmitted Balamuthia mandrillaris – Arizona, 2010. MMWR Morb Mortal Wkly Rep 2010; 59: 1182
  • 108 Centers for Disease Control and Prevention (CDC). Balamuthia mandrillaris transmitted through organ transplantation – Mississippi, 2009. MMWR Morb Mortal Wkly Rep 2010; 59: 1165-1170
  • 109 Combs Jr FJ , Erly WK, Valentino CM et al. Best cases from the AFIP: Balamuthia mandrillaris amebic meningoencephalitis. RadioGraphics 2011; 31: 31-35
  • 110 Hamide A, Sarkar E, Kumar N et al. Acanthameba meningoencephalitis: a case report. Neurol India 2002; 50: 484-486
  • 111 Slater CA, Sickel JZ, Visvesvara GS et al. Brief report: successful treatment of disseminated acanthamoeba infection in an immunocompromised patient. N Engl J Med 1994; 331: 85-87
  • 112 Singhal T, Bajpai A, Kalra V et al. Successful treatment of acanthamoeba meningitis with combination oral antimicrobials. Pediatr Infect Dis J 2001; 20: 623-627
  • 113 Ghosh PS, Ghosh D, Loddenkemper T et al. Necrotizing granulomatous meningoencephalitis due to Balamuthia in an immunocompetent child. Neurology 2011; 77: 801-802
  • 114 Mayer PL, Larkin JA, Hennessy JM. Amebic encephalitis. Surg Neurol Int 2011; 2: 50
  • 115 Centers for Disease Control and Prevention. Naegleria fowleri: primary amebic meningoencephalitis (PAM). Im Internet: http://www.cdc.gov/parasites/naegleria/ Updated May 22, 2014 (Stand: 2. 9. 2015)
  • 116 Fowler M, Carter RF. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. BMJ 1965; 2: 740-742
  • 117 Butt CG. Primary amebic meningoencephalitis. N Engl J Med 1966; 274: 1473-1476
  • 118 Kemble SK, Lynfield R, DeVries AS et al. Fatal Naegleria fowleri infection acquired in Minnesota: possible expanded range of a deadly thermophilic organism. Clin Infect Dis 2012; 54: 805-809
  • 119 Singh P, Kochhar R, Vashishta RK et al. Amebic meningoencephalitis: spectrum of imaging findings. AJNR Am J Neuroradiol 2006; 27: 1217-1221
  • 120 Stoppacher R, Adams SP. Malaria deaths in the United States: case report and review of deaths, 1979–1998. J Forensic Sci 2003; 48: 404-408
  • 121 Cox FE. History of the discovery of the malaria parasites and their vectors. Parasit Vectors 2010; 3: 5
  • 122 Mohanty S, Taylor TE, Kampondeni S et al. Magnetic resonance imaging during life: the key to unlock cerebral malaria pathogenesis?. Malar J 2014; 13: 276
  • 123 Potchen MJ, Kampondeni SD, Seydel KB et al. Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. AJNR Am J Neuroradiol 2012; 33: 1740-1746
  • 124 Gupta S, Patel K. Case series: MRI features in cerebral malaria. Indian J Radiol Imaging 2008; 18: 224-226
  • 125 Yadav P, Sharma R, Kumar S et al. Magnetic resonance features of cerebral malaria. Acta Radiol 2008; 49: 566-569
  • 126 Millan JM, San Millan JM, Muñoz M et al. CNS complications in acute malaria: MR findings. AJNR Am J Neuroradiol 1993; 14: 493-494
  • 127 Nickerson JP, Tong KA, Raghavan R. Imaging cerebral malaria with a susceptibility-weighted MR sequence. AJNR Am J Neuroradiol 2009; 30: e85-e86
  • 128 Cordoliani YS, Sarrazin JL, Felten D et al. MR of cerebral malaria. AJNR Am J Neuroradiol 1998; 19: 871-874
  • 129 Manzella A, Borba-Filho P, Brandt CT et al. Brain magnetic resonance imaging findings in young patients with hepatosplenic schistosomiasis mansoni without overt symptoms. Am J Trop Med Hyg 2012; 86: 982-987
  • 130 Centers for Disease Control and Prevention. Parasites: schistosomiasis. Im Internet: http://www.cdc.gov/parasites/schistosomiasis/ Updated November 7, 2012 (Stand: 2. 9. 2015)
  • 131 World Health Organization. Schistosomiasis. Im Internet: http://www.who.int/schistosomiasis/en/ Updated 2014 (Stand: 2. 9. 2015)
  • 132 Ueki K, Parisi JE, Onofrio BM. Schistosoma mansoni infection involving the spinal cord: case report. J Neurosurg 1995; 82: 1065-1067
  • 133 Betting LE, Pirani Jr C, de Souza Queiroz L et al. Seizures and cerebral schistosomiasis. Arch Neurol 2005; 62: 1008-1010
  • 134 Pittella JE. Neuroschistosomiasis. Brain Pathol 1997; 7: 649-662
  • 135 Nascimento-Carvalho CM, Moreno-Carvalho OA. Neuroschistosomiasis due to Schistosoma mansoni: a review of pathogenesis, clinical syndromes and diagnostic approaches. Rev Inst Med Trop Sao Paulo 2005; 47: 179-184
  • 136 Pittella JE, Lana-Peixoto MA. Brain involvement in hepatosplenic Schistosomiasis mansoni. Brain 1981; 104: 621-632
  • 137 Pittella JE, Gusmão SN, Carvalho GT et al. Tumoral form of cerebral schistosomiasis mansoni: a report of four cases and a review of the literature. Clin Neurol Neurosurg 1996; 98: 15-20
  • 138 Sanelli PC, Lev MH, Gonzalez RG et al. Unique linear and nodular MR enhancement pattern in schistosomiasis of the central nervous system: report of three patients. AJR Am J Roentgenol 2001; 177: 1471-1474
  • 139 Bennett G, Provenzale JM. Schistosomal myelitis: findings at MR imaging. Eur J Radiol 1998; 27: 268-270
  • 140 Shail E, Siqueira EB, Haider A et al. Neuroschistosomiasis myelopathy: case report. Br J Neurosurg 1994; 8: 239-242